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Chapter 1 Introduction 

1.1 Research Motivation and Objective 

In the United States and many parts of the world, the trend toward a deregulated electricity 

market has put the utilities under severe stress to reduce operation and maintenance (O&M) 

costs in order to maximize returns and stay ahead of competition. Maintenance of 

transmission system, which may cost more than 40% of the total budget of the operating 

expenses [1], can be among the first categories of improving efficiencies and lowering the 

budget. On the other hand, the reliability of power system is still the most important factor of 

making maintenance schedules due to the tremendous amount of cost of blackouts. The 

traditional scheduling method is mainly based on conservative deterministic security 

assessment, by emphasizing the most severe, credible event [2]. However, under the pressure 

of market competition, the decreased availability of capital has inhibited investment in new 

facilities, and therefore companies in many cases have continued to maintain and operate 

increasingly aged equipment. As a result, companies find that maintenance needs always 

exceed available financial and human (labor) resources so that the problem to be solved is 

not what are the minimum resources needed to achieve a particular reliability level, but rather, 

what is the maximum reliability level that can be achieved with a limited amount of 

resources. 

Motivated by this requirement of industry, our objective in this research is to develop a 

method of allocating economic resources and scheduling maintenance tasks among bulk 

transmission system equipment so as to optimize the effect of maintenance with respect to 

the mitigation of component failure consequences. My work mainly includes the following 

parts: 

1. Failure mode identification: Taxonomies are essential in identifying the effects of 

maintenance tasks on hazard rates. Taxonomies of failure modes associated with power 

transformers together with maintenance tasks that address those failure modes are 

provided. 

2. Hazard rate estimation: Hazard rates and time-to-failure reductions from each 

maintenance task are used in optimizing resources. Methods have been developed, to 
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estimate probabilistic indices such as hazard rate and time to failure for power 

transformers, using sequences of condition measurements obtained from either 

continuous monitoring or from periodic inspection and testing. These methods also allow 

calculation of the reduction in hazard rate and time to failure for each component. 

3. Risk reduction from expected redispatch costs: I extended a previously developed 

simulator that performs efficient hour-by-hour security assessment for specified 

contingencies (corresponding to failure of a maintainable line, transformer, or circuit 

breaker) over a period such as a year. For each hour, the simulator evaluates each 

contingency in terms of the cost of redispatch necessary to eliminate violations of 

reliability criteria. These costs, when multiplied by contingency probability, provide the 

expected contingency cost, or risk, for the hour, and summed over the time period (e.g., 

year) provides the expected contingency cost, or risk, for the year. The effect of a 

specified maintenance task can be quantified based on the amount of risk cumulative 

reduction obtained from it. 

4. Midterm maintenance selection and scheduling: Algorithms and related software 

applications were created for selecting and scheduling transmission-related maintenance 

tasks over a budget and labor-constrained time period (e.g., a year) such that the effect of 

those resources are optimized. 

1.2 Background of research 

The effectiveness of expending maintenance resources can vary dramatically depending 

on the target and timing of the maintenance activities. The existing state-of-the-art offers at 

least three basic approaches for making the decisions associated with identifying 

maintenance activities: (1) time based maintenance (TBM) or scheduled maintenance is 

usually a conservative (and costly) approach, whereby inspections and maintenance are 

performed at fixed time intervals, often, but not necessarily, based on manufacturer's 

specifications; (2) condition-based maintenance (CBM) initiates a maintenance activity when 

data from monitoring the equipment indicates a need; (3) reliability centered maintenance 

(RCM) prioritizes maintenance activities based on quantification of likelihood and 

consequence of equipment failures, and optimization techniques offer methods of 



www.manaraa.com

3 

maximizing effectiveness of the maintenance activities subject to constraints on economic 

resources, available maintenance crews, and restricted time intervals. These three approaches 

are illustrated in the circled part of Fig. 1.1 [3], 

Asset Management 

Purchasing Maintenance Disposal 

Condition 
Monitoring 

Age, 
Bulk RCM 

Mathematical 
Models 

Fig. 1.1: Maintenance approach overview 

In the context of deregulated electrical market, equipment monitoring has attracted 

considerable attention in the past decades. By monitoring of important functions of those 

equipments, developing faults can be detected before costly outages and/or equipment 

failures occur, thus cost saving can be realized through a delay in the procurement of 

transformers and reduction in maintenance effort. However, the high investment of condition 

monitoring equipment forbids its application on all equipments in transmission system. 

Reliability centered maintenance, on the other hand, is more practical since it utilizes 

condition monitoring information together with an analysis of needs and priorities and 

generally results in a prioritization of maintenance tasks based on some index or indices that 

reflect equipment condition and the equipment importance. 

In this thesis, new technologies are introduced to develop a system wide maintenance 

allocation and scheduling system based on automated integration of condition monitoring 

with an RCM-based optimized scheduler for transmission components. This framework will 

help utilities to reduce maintenance costs while increasing equipment reliability to meet the 
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challenges from the increasingly competitive marketplace. It also helps to extend equipment 

life; cut costs for substation design, refurbishment, and construction; and ensure high levels 

of health and safety for operation and maintenance personnel, the public, and the 

environment. 

In order to limit the work to what can be accomplished within the designated duration, I 

focused my research of failure mode analysis and hazard rate estimation on transformers 

since it is the most important and expensive components in the transmission system. 

Furthermore its failure can have significant system reliability impact and the cost. Besides, 

the analytic models and procedures for using conditions of the monitored equipment in 

decision making related to a maintenance allocation and scheduling function based on 

transformers can be used on other types of equipments. 

1.3 Contents of the dissertation 

In this thesis, chapter 2 introduces the failure modes, maintenance activities, and condition 

monitoring techniques for transformers. Chapter 3 compares the methods of linking 

transformer condition monitoring information to the time-dependent failure probability. A 

hazard rate estimation method based on hidden Markov model (HMM) with condition 

monitoring data is also introduced. Chapter 4 presents the system risk simulator based on 

dispatch cost due to the contingencies. Mid-term maintenance scheduling problem is 

formulated and optimization technique to solve the high-dimensional integer programming 

problem is investigated and applied to a US utility system. In chapter 5, conclusions and 

suggestions for future work are presented. 



www.manaraa.com

5 

Chapter 2 Failure modes, maintenance and monitoring of power 
transformers 

The power transformer accounts for a significant percentage of investment in the 

transmission system, and they usually provide operationally important links. As a result, their 

failure can have dramatic economic consequences in terms of unit repair and replacement 

and operational constraints. This chapter summarizes the different ways in which a 

transformer can fail together with the various maintenance tasks that contribute to preventing 

or delaying those failures. 

2.1 Transformer Failure Modes and corresponding maintenance 

A failure mode is a characterization of the way a component, process, or system fails, 

usually in terms of how the failure is observed (in contrast to how the failure is caused). For 

example, the dielectric breakdown of transformer oil is a failure mode, which may have 

multiple causes such as oil contamination, oil oxidization, thermal decomposition, and 

moisture in oil from cellulose decomposition. A contingency is the result of the failure mode, 

which is usually an outage in the transmission system. One contingency can be caused by 

different failure modes. And one failure mode may cause different contingencies, according 

to real condition of the system. Failure modes and effects analysis (FMEA) is an important 

procedure to identify and assess consequences or risks associated with potential product 

failure modes. A FMEA typically includes a listing of failure modes, possible causes for each 

failure, effects of the failure and their seriousness and corrective actions that might be taken 

[4]. 

2.1.1 Definition and cost of transformer failures 

Failure of transformer is an important cause of transmission outage and sometimes can 
cause significant loss to the system. A 'failure' of transformer can be defined as [5]: 

• A forced outage of the transformer due to major damage of the transformer in service. 

• A problem that requires the transformer to be taken to the factory/workshop for repair 
work. 

• An extensive field repair is also regarded as a failure. 
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Transformer failure does not necessarily imply the 'blue smoke' condition where the 

component has catastrophically failed. Rather, 'failure' can be defined by a set of 

measurement values for which engineering judgment results in the action of removing the 

transformer from service. 

Economic consequences of transformer failure can be large, due to the cost of property 

damage, repair cost, and the business cost due to transmission service interruption. The time 

to repair and replace a power transformer is also substantial. For example, the repair and 

replacement of a 345/138 kV transformer normally requires about 12 - 15 months, and if a 

spare is available, the time needed for replacement of a failed unit is in the range of 8 - 12 

weeks [5]. Reference [6] contains a five-year survey (1997-2001) of transformer failure cost 

worldwide based on available data. Table 2.1 displays the annual transformer claims 

including total costs, property damage costs, and transmission service interruption costs.. 

TABLE 2.1 : NUMBER AND COSTS OF POWER TRANSFORMERS FAILURES BY YEAR 

Year # of losses Total costs Property damage costs Transmission service 
interruption costs 

1997 19 $40,779,507 $ 25,036,673 $ 15,742,834 
1998 25 $24,932,235 $24,897,114 $35,121 
1999 15 $37,391,591 $ 36,994,202 $ 397,389 
2000 20 $ 150,181,779* $ 56,858,084 $ 93,323,695 
2001 15 $ 33,343,700 $ 19,453,016 $ 13,890,684 

Total 94 $286,628,811 $ 163,239,089 $ 123,389,722 
* Total losses in 2000 includes one claim with a business interruption portion of over $86 million US 

Table 2.1 indicates that transformer failure can result in significant costs. So analyzing the 

failure modes and developing policies for monitoring and maintaining transformers is an 

essential task for transformer asset management. 

2.1.2 Transformer Failure Modes and Mechanisms 

Transformer failure modes can be divided into two groups: maintainable and non-

maintainable. There are some failures that cannot be improved with maintenance, such as 

human error, manufacture and design defects, and bad weather such as lightning or ice 

storms. These problems generally have a decreasing or constant failure probability over the 

transformers lifetime and maintenance cannot reduce the failure probability In this work we 

only focus on the failure modes whose probability increases with the service age or 

operations, so that maintenance can 'renew' the corresponding conditions and thus reduce the 
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failure probability. Such failure modes are called 'maintainable' failure modes. 

During the entire operation time, a power transformer has to withstand numerous stresses. 

These stresses are of thermal, electrical, and mechanical nature and can result in various 

problems, such as insulation degradation, partial discharge, hot spots etc. The mechanisms of 

major failure modes of transformers are described in the following six subsections. 

2.1.2.1 Insulation degradation 

Insulation degradation can be caused by many reasons, but in most cases it is because of 

the high thermal and electrical stress around the neighborhood of the insulation material. In 

oil-immersed transformers, usually the insulation materials are cellulose and mineral oil. 

Both of them deteriorate under the thermal or electrical stress of transformers in service. 

1) Cellulose decomposition 

Paper (cellulose) immersed in mineral oil is used as the insulation system for power 

transformers. The main component of paper is cellulose fiber, a carbohydrate, and the 

structure of cellulose is a long chain made up of glucose molecules. The number of the 

molecules in the chain can be 300-750. Under thermal or electromagnetic stress, the long 

chain may break resulting in the paper becoming brittle. Insulation of the paper is not 

acceptable if the number of glucose molecules in one chain is less than 200. Also, water is 

produced internally as the product of oxidation of the cellulose, and water in paper can 

significantly reduce the dielectric strength of paper. 

2) Oil decomposition 

Mineral transformer oils are mixtures of many different hydrocarbon molecules, and the 

decomposition processes for these hydrocarbons in thermal or electrical faults are complex. 

The fundamental steps are the breaking of carbon-hydrogen and carbon-carbon bonds. 

Different gases are formed during the decomposition process based on the presence of 

individual hydrocarbons, on the distribution of energy and temperature in the neighborhood 

of the fault, and on the time during which the oil is thermally or electrically stressed. IEEE 

has provided an interpretation of the analysis of dissolved gases (DGA) in oil and standards 

of determining the condition of the transformer with the DGA test data [7], Products of oil 

decomposition might contain combustible gases, which can cause danger to the transformers 

if they cannot be released properly. In addition, acids are produced as a result of oxidation of 
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the oil, increasing the rate at which the oxidation takes place. Carbon and sludge can also be 

produced, coating heat transfer surfaces on the core/coil and the tank/radiators, reducing the 

heat transfer capacity of the system. The operational temperatures are increased, thus 

accelerating the degradation of the oil or even damaging the transformer. Also the carbon 

might cause some short circuit between different surfaces. 

Insulation deterioration via either cellulose or oil degradation can cause problems such as 

short circuit within the transformer, extra heating, or partial discharge or arcing between 

different surfaces. These problems can require that the transformer be removed from service, 

and in the worst case, they can result in damage to the transformer. 

Generally, insulation deterioration is a mixed, complicated physical-chemical process that 

it is difficult to simulate with a laboratory model. As a result, the gases produced in this 

process, have been used as the most common criteria in judging the severity of the 

deterioration. 

2.1.2.2 Winding failure 

Winding failure can be caused by many reasons, including lightning, overload, or short-

circuits. Overload and short-circuits caused by low insulation strength can cause extra heat 

buildup on the winding and may damage the winding. Lightning or external short-circuits can 

cause current several times to several tens of times as large as the rated load current to flow 

through the winding conductor. Large amounts of short circuit currents result in mechanical 

stress on the transformer winding due to the electromagnetic force which is proportional to 

the square of the short circuit current. The magnitude of the electromagnetic force due to the 

short circuit current may amount to a few million Newton [8]. This force can deform the 

arrangement of the winding conductors or even mechanically destroy fixed transformer parts. 

If the short circuit current is sustained from more than a few cycles, the winding conductors 

are subjected to extreme heat with potential to melt or otherwise cause the paper insulation to 

fail. Also, if as a result of this force, the high-voltage or low-voltage windings experiences 

displacement, distortion, or lack of clamping force, the difference in height between windings 

will increase leading to ampere-turn imbalance and axial force deviation, resulting in 

intensified vibration. 
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2.1.2.3 LTC failure 

Tap changers usually have a higher failure probability than transformers, although smaller 

consequences. Improper tap position can cause excessive core loss and consequently 

excessive heating. Contact coking is a major problem. Initial deposition of carbon on LTC 

contacts leads to increased contact resistance, which in turn leads to increased heating and 

the buildup of carbon. Like transformers, LTCs also experience arcing and overheating 

problems. Although fault gases are produced even in normal operation, empirical work has 

revealed that concentration of fault gases in 'problem' LTCs are significantly higher than the 

levels in a trouble-free unit. Therefore, although the underlying principles of DGA analysis, 

based on establishing maximum threshold concentration for each fault gases, can be applied 

without modification to the analysis of fault gases formed in LTCs, the selection of the 

threshold must be empirically determined, based on case historical studies. 

2.1.2.4 Partial discharge 

Partial Discharge (PD) is an electrical discharge that only partially bridges the insulation 

between conductors or interfaces within that insulating system or from the sharp edges of 

energized apparatus parts. It may be induced by temporary over-voltage, an incipient 

weakness in the insulation introduced during manufacturing, or as a result of degradation 

over the transformer lifetime. Different classes of defects result in PD activity in oil filled 

power transformers. These include: bad contacts, floating components, suspended particles, 

protrusions, rolling particles, and surface discharges [9], PD is undesirable because of the 

possible deterioration of insulation with the formation of ionized gas due to this breakdown 

that may accumulate at or in a critical stress region [10]. This generally involves non-self-

restoring insulation that may be subject to permanent damage. 

2.1.2.5 Bushing failure 

Bushings provide an insulated path for energized conductors to enter grounded electrical 

power apparatus. Bushings are not only exposed to high electrical stress but also may be 

subjected to high mechanical stress, affiliated with connectors and bus support, as well. 

Although a bushing may be thought of as somewhat of a simple device, its deterioration can 

have severe consequences. The deterioration mechanisms for bushings include a combination 
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of cracking, corrosion, wear and contamination. Failure of a bushing can cause flashover, 

short circuit and thus outage of the transformer, or even catastrophic events such as tank 

rupture or violent explosion of the bushing and fire [11]. 

2.1.2.6 Other failure modes 

There are some other failure modes, with low probability, but they can cause outage and 

even significant damage to the transformer. For example, loss of sealing may cause insulation 

problems and environmental contamination. Blocking of pressure relief devices might cause 

combustible gases to accumulate in the transformer tank and, if unrelieved, lead to an 

explosion. Core vibration can aggravate when core-clamping force is lost, resulting in extra 

heat and possibly damage of the transformer. Heat exchange devices such as radiators, fans 

and corresponding pumps should work properly to avoid extra heat within the transformer. 

2.2 Typical maintenance activities 

In industry, maintenance always includes two parts: testing and improvements. The first 

part are all kinds of testing and measurements activities which will be performed routinely, if 

condition monitoring techniques are not available, such as visual inspection, temperature 

measurements, DGA test, PD test and commissioning test. In our study, we define the 

maintenance only as the second part, which is equipment refurbishing or refining power 

equipments to prevent oncoming failure, based on the judgment of the status of the 

component in the deterioration process in each failure mode. 

Generally, the maintenance activities are consistent with the failure modes listed in 

section 2.1. It can be classified as the following categories: 

1. Insulation improvement 

Maintenance activities which could improve the insulation strength mainly are oil 

filtering or oil degasification. The purposes of oil filtering and degasification are: 

• Remove oxygen and other gases from transformer or LTC oil. 

• Reduce the acid and moisture contents in the transformer or LTC oil 

• Remove metal or other particles in the oil 
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Other maintenance which might improve insulation conditions also include leaks 

repair of transformer tank, which is also very important but has much lower 

frequency comparing with oil filtering and degasification. 

2. Mechanical maintenance 

Maintenance of mechanical parts of transformer includes the following activities: 

* Repair and cleaning of bushing 

• Inspect and repair the pressure relief blocking 

• Repair or replacement of the heat exchanging devices such as fans, radiators and 

pumps 

• Rewinding of the transformer 

• Out of service commissioning testing or calibration 

• Overhaul which may include any of above and replacement or repair of any 

individual component in the transformer. 

Appendix 1 summarizes typical failure modes, causes, effects as well as corresponding 

maintenance activities for power transformer. 

2.3 Condition monitoring techniques for transformer failures 

The most obvious purpose of transformer monitoring is to determine the condition of the 

equipment, potentially resulting in various benefits [12]: 

(1) Operational status: determine operational ability/statue of transformer; 

(2) Failure prevention: evaluate condition of transformer, detect abnormal conditions and 

initiate action to prevent impending failure; 

(3) Maintenance support: evaluate condition of transformer and initiate maintenance only 

when degraded condition requires maintenance; assist with maintenance planning; judge 

condition of a larger population of similar/identical transformers; 

(4) Life assessment: evaluate condition of transformer to determine anticipated remaining 

life; detect abnormal conditions; 

(5) Optimize operation: evaluate functional condition of transformer while extending or 

maximizing duties imposed on transformer (generally at conditions other than nameplate 
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loading); control the effects of loading regardless of transformer condition; 

(6) Commission verification tests: confirm correct installation conditions and adjustments; 

evaluate condition of transformer and improve effectiveness and efficiency of 

verification/acceptance testing; automate collection and preservation of baseline condition 

data and characteristics; 

(7) Failure analysis: provide information on prior condition of transformer after a failure has 

occurred; 

(8) Personnel safety: prevent unsafe condition to personnel; 

(9) Environment safety: prevent unsafe condition to environment; 

For power transformers, monitoring can take many forms including manual inspections 

(periodic visual inspections), continuous monitoring with a change in status/condition alarm 

as the only output (low level alarm), periodic automated monitoring (connection of portable 

analysis instruments), or continuous on-line monitoring (full time measurement of 

parameters to assess condition while in service). I review some of these forms in the 

following five subsections [13, 14, 15]. 

2.3.1 Operating Condition Monitoring 

Transformer operating condition is mainly determined by its load current and voltage. 

Maximum loading of transformers is restricted by the temperature to which the transformer 

and its accessories can be exposed without excessive loss of life. Continuous on-line 

monitoring of current and voltage at operating frequency coupled with temperature 

measurements can provide a means to gauge thermal performance. Load current and voltage 

monitoring can also automatically track the loading peaks of the transformer; increase the 

accuracy of simulated computer load flow programs; provide individual load profiles to assist 

system planning; and aid in dynamic loading the transformer. Voltages can be measured 

easily using the measuring tap of the bushings, and, for current measurements, current 

transformers either mounted in the bushing domes or external devices can be used. An 

operating condition monitoring agent can use such loading information to provide one view 

of transformer operating condition. 
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2.3.2 Temperature Monitoring 

Based on temperatures measured at different locations of a transformer, e.g., oil 

temperature, winding temperature etc., thermal related faults can be identified. There is a 

direct correlation between winding temperature and normally expected service life of a 

transformer. The hottest spot temperature of the winding is one of various limiting factors for 

the load capability of transformers. Insulation materials lose their mechanical strength with 

prolonged exposure to excessive heat. This can result in tearing and displacement of the 

paper and dielectric breakdown that will result in premature failures. There is an IEEE guide 

describes the aging mechanisms and diagnostic techniques in evaluating electrical insulation 

systems [16]. Conventional winding temperature measurements are not typically direct and 

have slow response; the hot spot temperature is indirectly calculated from oil temperature 

and load current measurements. As an alternative, fiber optic temperature sensors can be 

installed in the winding only when the transformer is manufactured or rebuilt or refurbished. 

Two main types of sensors are available: optical fibers that measure the temperature at one 

point, and distributed optical fibers that measure the temperature along the length of the 

winding. Since a distributed fiber optic temperature sensor is capable of measuring the 

temperature along the fiber as a function of distance, it can replace a large number of discrete 

sensors, allowing real-time measurement of temperature distribution. Top oil temperature, 

ambient temperature, load (current), fan/pump operations, and direct reading winding 

temperatures can also be combined in algorithms to determine hottest-spot temperature and 

manage the overall temperature conditions of the transformer. 

2.3.3 Dissolved Gas-in-oil Analysis 

An important benefit to transformer monitoring is to the ability to identify the onset of 

unreliable performance as the end of life approaches. There are a variety of chemical, 

electrical and physical conditions monitoring techniques that can be applied, but for many 

companies the basic method is a regular analysis of an oil sample. The dissolved gas-in-oil 

analysis (DGA) technique was introduced in the mid 1960s and has been widely used 

throughout industry as the primary diagnostic tool for transformer maintenance, and it is 

usually key to a transformer owner's loss prevention program [17]. 

Mechanical and electrical faults may rise following short circuits, local overheating at hot 
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spots or leakage flux and eddy currents in the core, and partial discharge or arcing at areas of 

high stress. Decomposition products from breakdown of the oil, paper or insulating boards, 

and glue are transported through the transformer by the coolant oil. Some of these products 

are low molecular weight gases dissolved in the oil and can be identified by gas 

chromatography. Others indicating solid degradation includes furans, cresols, and phenols 

that can be detected by liquid chromatography [18]. 

Dissolved Gas-in-oil Analysis (DGA) has proven to be a valuable and reliable diagnostic 

technique for the detection of incipient fault conditions with liquid-immersed transformers by 

detecting certain key gases. The gases involved are generally CO, CO2, H2, O2, CH4, C2H2, 

C2H4, and C2H6. The solubility of these gases is dependent on the type of gas, the gassing 

tendency of the oil and temperature [7]. Laboratory based DGA programs are typically 

conducted on a periodic basis dictated by the application or transformer type. Oil samples are 

normally taken at least once a year from the transformer, with samples taken from the top and 

bottom of the main tank and from the tap changer. Some problems with short gestation times 

may go undetected between normal laboratory test intervals. Installation of continuous gas-

in-oil monitors may detect the start of incipient failure conditions to allow confirmation of 

the presence of a suspected fault through laboratory DGA testing. This early warning may 

allow the user to plan necessary steps required to identify the fault and implement corrective 

actions where possible. Technology exists that can determine gas type, concentration, 

trending, and production rates of generated gases. The rate of change of gases dissolved in oil 

is a valuable diagnosis in terms of determining the severity of the developing fault. The 

application of on-line dissolved gas monitoring considerably reduces the risk of missing the 

detection or prolonged delay in detecting fault initialization due to long on-site oil sampling 

intervals [13]. 

For any given sample the absolute and relative concentrations of fault gases can be used to 

indicate the type, intensity and location of the fault. Table 2.2 summarized the key gas 

interpretation method [18]. The decomposition of transformer oil at temperatures ranging 

from 150 to 500 °C produces large quantities of hydrogen and methane and small quantities 

of ethylene and ethane. The concentration of hydrogen increases with increasing temperature 

and exceeds that of methane. At higher temperatures, high concentrations of ethane and 
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ethylene are produced. Ethane concentration is usually higher than ethylene. At the upper end 

of the temperature range, high concentrations of hydrogen and ethylene and traces of 

acetylene may be detected. The thermal decomposition of both paper and oil may produce 

carbon monoxide, but paper is less stable, producing CO at lower temperatures than oil. 

Consequently, the ratio of COJ/CO is sometimes used as an indication of paper 

decomposition. Low energy discharges produce mainly hydrogen, with much smaller 

quantities of methane and trace quantities of acetylene. This may also happen with very low 

level intermittent arcing. As the intensity of the discharge increases, the concentration of 

acetylene and ethylene rises significantly. Arcing or continuous sparking may give rise to 

temperatures of 700 to 800 °C leading to the production of large quantities of acetylene. 

There is also an IEEE guide available describing the interpretation of gases generated in oil-

immersed transformers, operating procedures, and instruments [7], 

TABLE 2.2: KEY GAS INTERPRETATION 

Key Gas Characteristic Fault 

H2 Partial Discharge 

Thermal Fault < 300°C 

Thermal Fault 300 C — 700 C 

Thermal Fault > 700 C 

Arcing 

2.3.4 Moisture-In-Oil Monitoring 

The measurement of moisture in oil is a routine test performed in the laboratory on a 

sample taken form the transformer. The moisture level of the sample is evaluated at the 

sample temperature and at the winding temperature of the transformer. This data is vital in 

determining the relative saturation of moisture in the cellulose/liquid insulation complex that 

establishes the dielectric integrity of the transformer. Moisture in the transformer reduces the 

insulation strength by decreasing the dielectric strength of the transformer's insulation system. 

As the transformer warms up, moisture migrates from the solid insulation into the fluid. The 

rate of migration depends on the conductor temperature and the rate-of-change of the 

conductor temperature. As the transformer cools, the moisture returns to the solid insulation 
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at a slower rate. The time constants for these migrations depend on the design of the 

transformer and the solid and liquid components in use. The combination of moisture, heat 

and oxygen are the key conditions that indicate accelerated degradation of the cellulose. 

Excessive amounts of moisture can accelerate the degradation process of the cellulose and 

prematurely age the transformers' insulation system. 

2.3.5 Partial Discharge Monitoring 

Partial Discharge (PD) is an electrical discharge that only partially bridges the insulation 

between conductors as introduced in 2.1.2.4. PD in the main insulation often poses a major 

threat to the function of the transformer. The major causes of the long-term degradation and 

ultimate failure of this insulation are erosion and tracking due to PD. These discharges can, 

however, be detected by the application of appropriate diagnostic techniques. The benefits of 

these techniques are: 

• Potential sources of failure can be identified 

. Intermittent activity can be located 

. Confidence is provided in the continuing safety and reliability of the transformer 

. Investment decisions on the replacement or refurbishment of aged transformer can be based 
on measurement information 

• No outage is required 

One cause of transformer failures is dielectric breakdown. Failure of the dielectrics inside 

transformers is often preceded by PD activity. A significant increase either in the PD level or 

in the rate of increase of PD level can provide an early indication that changes are evolving 

inside the transformer. Since PD can deteriorate into complete breakdown, it is desirable to 

monitor this parameter on-line. PD in oil will produce hydrogen dissolved in the oil. 

However, the dissolved hydrogen may or may not be detected, depending on the location of 

the PD source and the time necessary for the oil to carry or transport the dissolved hydrogen 

to the location of the sensor. The PD sources most commonly encountered are tracking in the 

insulation, void in solid insulation, metallic particles, and gas bubbles generated due to some 

fault condition. The interpretation of detected PD activity is not straightforward. No general 

rules exist that correlate the remaining life of a transformer to PD activity. As part of the 

routine factory acceptance tests, most transformers are tested to have a PD level below a 
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specified value. From a monitoring and diagnostic view, detection of PD above this level is 

therefore a cause for an alarm but not generally for a tripping action. To give a correct 

diagnosis after receiving an alarm signal via sensors or via gas-in-oil sampling, it is 

necessary to localize and to characterize the PD source. 

Localization of PD is made acoustically using different methods for triangulation. This 

requires deep knowledge of wave propagation in different types of materials/liquids and is a 

task for highly qualified experts. Each PD occurring within the insulation produces a low-

amplitude mechanical pulse, which propagates to the tank wall where it can be detected by an 

appropriate sensor. The output of the sensor will be proportional to the energy content of the 

forcing function (pulse). Because the sensor contains a resonant crystal, it will oscillate at its 

natural frequency. The amplitude of these oscillations will then decay exponentially due to 

the mechanical damping inherent in the crystal. Consequently, each pulse arriving at the 

transformer tank wall will result in a "burst" type signal from the transducer. One burst is 

produced for each PD detected. The number of oscillations contained within each burst is 

determined by the amplitude of the forcing function (pulse from the PD) that excited the 

crystal. An accounting of the number of these oscillations, which occurs within a 1 s interval, 

or a set number of cycles, contains information relative to both the number of discharges that 

occurred within that time interval as well as their amplitude. The amplitude of the mechanical 

pulse is attenuated as it propagates through the insulation and oil during its journey to the 

tank wall. Consequently, the oscillation count rate will be at its maximum when the sensor is 

at its closest proximity to the source. This effect enables the operator not only to detect the 

presence of PDs, but also to estimate the approximate location of their source. There is an 

IEEE guide [19] describes the instrumentation, test procedures, and results interpretation for 

the acoustic emissions detection of PD in power transformers. 

Noise suppression in a substation environment poses the largest challenge to accurate PD 

detection. Characterization of the type of PD, e.g., void in main insulation or metal particle, 

can be made by using Phase Resolved PD Analysis (PRPDA [20]). This is a modern PD 

measuring system that performs both data acquisition and data processing of conventionally 

detected PD signals. The PD pulses are presented with respect to charge intensity, phase 

position and number of pulses. The obtained patterns form a "fingerprint" which is indicative 
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of a certain type of defect. The transformer needs to be de-energized a certain period of the 

investigations. 

There are other types of monitoring methods available, e.g. insulation power factor, static 

charge in oil, pump/fan monitoring etc. With enough on-line monitoring information, 

developing transformer failure modes can be detected well before they lead to catastrophic 

transformer/system failures. 

Based on an extensive review of literature and some other useful resources, Table 2.3 

summarizes typical major transformer failures and corresponding condition monitoring 

techniques and maintenance activities [21]. Also for each condition monitoring technique, the 

feasibility of online monitoring is listed. 

TABLE 2.3: FAILURE MODES OF TRANSFORMER AND CORRESPONDING CONDITION MONITORING 
TECHNIQUE AND MAINTENANCE ACTIVITIES 

Failure mode Condition monitoring 
technique 

Maintenance Online 
monitoring 

Cellulose insulation 
degradation 

Degree of Polymerization 
DGA analysis, 
Fluid analysis ( furan test, 
oxygen and moisture test) 

N/A Yes 
Yes 

Oil decomposition DGA analysis 
Fluid analysis 

Oil refinement (Filtering, 
Dehumidify, Degas) 

Yes 
Yes 

LTC failure DGA analysis 
Internal inspection 

Oil refinement 
Replacement of worn parts 

Yes 
No 

Partial Discharge P (acoustic and electric 
signal testing) 
DGA analysis 

Repair after location of the 
partial discharge 

Yes 

Yes 
Bushing failure Power factor test 

Visual inspection 
Replacement, cleaning and 
greasing 

No 
Yes 

Short turns or open 
winding circuits 

Resistance test 
Winding ratio test 

Rewind of transformer No 
No 

Loss of sealing Visual inspection Repair, replacement Yes 
Pressure relief 
blocking 

Visual inspection Repair the blocked relief 
device 

Yes 

Heat exchange 
devices failure 

Thermography, Function 
test, Vibration test 

Repair or replacement Yes 
No 
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Chapter 3 Transformer Failure Modes and Failure Probability 

3.1 Introduction 

Physical assets are subjected to a variety of stresses. These stresses cause the asset to 

deteriorate by lowering its resistance to stress. Eventually this resistance drops to the point at 

which the asset can no longer deliver the desired performance - and so it fails. The power 

transformer is a critical and capital intensive asset within a power system. Due to the limited 

capital investment for new facilities, many transformers are close to or beyond their designed 

life. As transformers age beyond their expected life, there is a risk of an increasing number of 

catastrophic transformer failures. There is a great deal of focus on maintenance and life 

extension of aged transformers to maximize the return on investments. This naturally leads to 

the use of reliability centered maintenance (RCM) approach where equipments with higher 

failure probabilities are given higher priority in maintenance. Thus failure probability 

estimation of equipment is required in maintenance asset management. 

Exposure to stress for transmission system equipment, is measured in a variety of ways 

including, for example, average percent loading, average temperature, operating cycles, 

number of operations, calendar time, or running time. In [22], six types of patterns are given 

that represent most kinds of aging and deterioration, as shown in Fig. 3.1. Pattern A is the 

well-known bathtub curve. It begins with a high incidence of failure (known as infant 

mortality) followed by a constant or gradually increasing failure probability, then by a wear-

out zone. Pattern B shows constant or slowly increasing failure probability, ending in a wear-

out zone. Pattern C shows slowly increasing failure probability, but there is no identifiable 

wear-out age. Pattern D shows low failure probability when the item is new, then a rapid 

increase to a constant level, while pattern E shows a constant failure probability at all ages. 

Pattern F starts with high infant mortality, which drops eventually to a constant or very 

slowly increasing failure probability. For a random failure, the failure probability in any short 

time interval, assuming that the device has been working up to that time, is constant. The 

time until failure is exponentially distributed and the hazard rate has the same shape of 

Pattern E. Because random failure modes have constant failure probabilities, maintenance 
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has no influence. These types of failure modes, then, are not maintainable. Failure modes 

associated with human error or natural disasters, e.g., earthquakes, tornadoes, etc., are of this 

sort. 

£ <D 

*  | i  

Time 

Fig. 3.1 : Probability of failure caused by aging and deterioration 

Curve A is commonly used to model component deterioration, and we adapt it here for 

modeling failure modes associated with power transmission equipment. We assume in this 

project the existence of such a hazard model for each failure mode contributing to the failure 

of a piece of equipment. Such hazard models may be estimated based on typical component 

lifetimes, or they may be obtained from statistics characterizing the performance of a large 

number of similar components. 

3.2 Definition of instantaneous failure probability 

The information obtained from various (on-line) condition monitoring techniques is a 

characterization of equipment state and therefore contains information useful in estimating 

failure probability. Flowever, this information, and its characterization of the equipment state, 

is point-wise in time, i.e., instantaneous, and it is equipment-specific. It is therefore useful in 

estimating instantaneous failure probabilities for specific equipment. Although such 

probabilities are what is needed in the kind-of mid-term decision-making addressed in this 
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chapter, it is important to distinguish them from the more common time-average, and 

sometimes equipment-average, failure probabilities typically used in long-term planning 

decision-making. 

In this section, I will present models for linking the transformer condition monitoring 

information to its time-dependent failure probability. I begin by providing some underlying, 

and basic concepts in equipment reliability. Let T be a random variable representing the time 

from when the equipment is put into operation at time t = 0 until the time when a failure 

occurs. The equipment may be either new or used when it is put into operation. In many 

cases the equipment will be removed and repaired, and then placed into operation after a 

refurbishment or a failure has been corrected. The uncertainties in the time to failure T may 

be described by the distribution function (cumulative density function) F(t) = Pr(T < t), or 

the probability density function f(t) = dF(t)/dt. The probability density function f(t) may 

be expressed as: 

m* p { , < 1 ^ ' + A < )  (3.i) 

Hence, /( t ) A t  is approximately equal to the probability that the equipment will fail in the 

time interval (t, t + At). The survivor function, which gives the probability that equipment 

will not fail up to time t, is given by: 

R ( t )  = Pr(T >r)= |"  f  ( r ) d r  (3.2) 

The equipment's life distribution is often most effectively characterized by the so-called 

hazard rate, or hazard rate, which is the conditional probability of failure. The hazard rate 

function h(t) may be expressed as: 

h ( t )  = lim — Pr[f < T  < t  +  A t  \  T  >  t ]  (3.3) 
Af-»0Af 

If we consider the equipment that has survived the time interval (0, t), i.e. T > t, then the 

probability that the equipment will fail in the time interval (t, t + At) is 

a p p r o x i m a t e l y  h ( t )  *  A t .  

It is only necessary to know one of the functions A(f), / ( / ) ,  R { t )  in order to be able to 

deduce the other two, as illustrated in Fig. 3.2 [23]. 
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R(t) 
h(t) 

exp[- J/z(r)dr] 
0 

Fig. 3.2: Relationships between h(t), f(t), and R(t) 

3.3 Overview of hazard rate estimation 

Methods of estimating the proximity of equipment to failure usually depend on available 

data. Based on the available data source of the hazard rate estimation, we can classify the 

methods of hazard rate estimation into the following categories: 1) Failure based estimation; 

2) Loading based estimation and 3) Condition based estimation. 

3.3.1 Failure based estimation 

Failure based estimation uses recordings of failures spanning multiple components over an 

extended time period. It is one of the most commonly used methods of calculating the failure 

probability. It can be classified into two categories: parametric and non-parametric estimation. 

For parametric estimation, an underlying parametric distribution needs to be assumed. The 

non-parametric method estimates the cumulative density function of time to failure from 

interval and right-censored data, without having to assume the underlying parametric 

distribution. 

3.3.1.1 Non-Parametric Hazard Function Model 

The most direct way of estimating hazard rate in reliability analysis, is to use the failure 
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data, which is the observation of failure of a group of equipments in a period of time. In order 

to get the hazard function for power transformers, a procedure was provided for estimation of 

h(t) as a so-called central hazard rate in [24]. For a specific kind of power transformer 

(make, model, and voltage level, etc.), suppose we have recorded enough transformer life 

data in a system. In interval [f,, /,+] ) ', let TV, denote the number of power transformers 

survived at ?,, Ft how many transformers failed, and C, the number of power transformers 

that were censored. However we cannot know precisely the exact time of every occurrence. It 

is prudent to group even precise data over every interval [tj, ti+x) to increase the number of 

events observed. This helps to overcome the random effects in estimation of h(t). It is clear 

that the number of transformers surviving until ti+l is: 

#,+, = ^ -C, (3.4) 

Every censored transformer should be treated as a removed one, assuming that exact times 

of failure or removal are known. The "end of observation" time, for the j-th transformer 

in interval [ t h  t i + ] )  is defined as: 

if jth transformer is observed to fail 

tij=-tijC, if jth transformer is removed {censored) (3.5) 

t i + i f  j t h  t r a n s f o r m e r  s u r v i v e s  l i W d \ @ ,  

Then the total amount of time of exposure to risk of all power transformers, TRi, during 

interval [tt, tl+] ) is: 

(3.6) 
j = ̂ 

The estimated central hazard rate in interval \ t t ,  t l + l  ) is defined as: 

(3.7) 

If we did not know the exact time of failure or removal, it would be reasonable to assume 

that all failures and removals are expected at the middle of the interval[f,, tj+]). Then the 

estimated central hazard rate in [ t n  t j + l )  can take the form: 

' Typically the time interval for estimating power transformer failure rate ranges from one to two years. 
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(3.8) 

Although expression (3.8) is not as precise as (3.7), it is more precise than the estimation 

frequently use in engineering applications for the hazard rate: 

(39)  

With reasonably precise recordings of the failure or removal times of the transformers, we 

can use equations (3.7) or (3.8) to estimate the time-dependent hazard rate, ht, as illustrated 

in Figure 3.3. 

h(t) x x 

Time-» 

Fig. 3.3: Bathtub Curve 

3.3.1.2 Parametric Hazard Function Model 

The parametric estimation method [25] requires an assumption that the failure times due to 

deterioration process follow a specific distribution. The objective is then to estimate the 

parameter(s) of the distribution using the field data. Weibull distribution has been widely 

used to model the hazard function for many types of equipment, because it is capable of 

representing many different forms. The Weibull probability density function is: 

/r(f) = "l ^ I- ^ J (3 10) 

exp 
f t ^  

, > 0 

0, otherwise 

P is called the shape parameter because it determines the shape of the distribution. And the 

parameter a is called the scale parameter because it determines the scale. Typically |3 is 

between 0.5 and 8.0. As (3 increases, the mean of the Weibull distribution approaches a and 

the variance approaches zero. Fig 3.4 illustrates this feature by appropriately varying the 
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shape and scale parameters. 

Weibull Distribution for alpha=10 

0.16 

0.14 
0.12 

> 0.1 

| 0.08 

S 0.06 

—*— Beta =0.5 

•*— Beta=1 

•X— Beta =4 
0.04 
0.02 

0 
3 5 7 9 11 13 15 17 19 

Time 

Fig. 3.4: Weibull Distributions 

The Weibull hazard function is: 

(3.11) 

If P < 1, the hazard rate is decreasing; if (5 = 1, the hazard rate is constant at a value of 

\/a ; if fi > 1, the hazard rate is increasing; the higher the value of (3, the faster the hazard 

rate is increasing. 

References [26, 27] report investigations into the feasibility of representing hazard rates of 

transformers or other components using the Weibull distribution, with failure data. Through 

experience and numerous data gathered by researchers and engineers, the transformer hazard 

rate (hazard function, ht ) has been shown to follow the so called "bathtub curve", as shown 

in Fig 3.3. The bathtub curve depicts equipment life in three stages. During the first stage, 

hazard rate begins high and decreases rapidly with time. This stage is known as the infant-

mortality period, and it has decreasing hazard rate. The infant mortality is followed by nearly 

constant hazard rate period, which usually lasts for the longest period of time. Finally, the 

curve ends with an increasing hazard rate. This is the period of aging. This bathtub curve can 

be well modeled by the Mixture Weibull, comprising two or three Weibull distributions each 

of which have well-tuned and unique scale and shape parameters. 

3.3.2 Loading condition based estimation: Hottest-spot Temperature Model 

Loading information was first used to estimate the remaining life of transformer [28, 29]. 
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It was mainly used to estimate life of the cellulose insulation, because cellulose life is 

directly related with the temperature of the windings and thus the loading history of the 

transformer. IEEE has provided the mathematical model linking transformer dielectric life to 

its winding hottest-spot temperature in [30]. It indicates that experimental evidence shows 

that the relation of insulation deterioration to time and temperature follows an adaptation of 

the Arrhenius reaction rate theory that has the following form: 

Per unit life = 9.80 x 10^'8 Exp( 15000 ) (3.12) 
@ „ + 2 7 3  

where &H is the winding hottest-spot temperature in unit of °C. 

Given the transformer MVA loadings and the ambient temperature, the ultimate steady 

state top oil temperature rise 6U over ambient temperature is computed as: 

a  + 1 (313)  

where 6^ is transformer top oil temperature rise over ambient temperature at rated load, K  

is the ratio of MVA loading to transformer nameplate rating. R  is the ratio of loss at rated load 

to no-load loss; n  is exponential power of loss versus top oil temperature rise. 

For transient temperature calculations, the top-oil temperature rise over ambient after t  
hours is: 

= + (3.14) 

where r0 is oil thermal time constant for rated load, and Bi is the initial top oil temperature 

rise over the ambient temperature. The EST rise above top oil temperature rise can then be 

estimated as: 

(3.15) 

where 6^ is hottest-spot conductor rise over top oil temperature at rated load, m  is the 

exponential power of winding loss versus winding gradient. Finally the HST of the 

transformer after t hours is 

@hst(t) = @o(() + @g(t) + @a(t) (3 16) 

where <90(Ois the ambient temperature. If the initial top oil temperature 0, is unknown, 

then it can be estimated base on the knowledge of load cycle information using an iterative 

method [29]. And then the life expectation of transformer, with respect to the cellular 
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decomposition, can be computed. 

3.3.3 Condition based hazard rate estimation 

Since power transformers are crucial and expensive equipment in transmission systems, 

they usually are well maintained and consequently have very high reliability. So in reality 

transformer failures are relatively rare, and it is difficult to obtain statistically significant 

failure data. Also, loading information is only one of the numerous factors contributing to the 

failure of transformer. On the other hand, condition data which tracks the deterioration of 

various failure modes is readily accessible for many power transformers. In this section, I 

will briefly describe a traditional degradation model to use such data to develop 

instantaneous hazard rates. 

A degrading failure mode is one that can be traced to an underlying degradation process. 

When it is possible to measure degradation, such measures often provide more information 

than failure-time data for purposes of assessing and improving product reliability [25]. If the 

actual physical degradation cannot be observed directly then measures of product 

performance degradation (such as dissolved-gas-in-oil analysis or DGA) may be used. 

3.3.3.1 Degradation as a function of time 

When degradation can be characterized as a function of time, a failure level (or a 

performance threshold) is defined, and the variation of the degradation variables is plotted 

versus the service time (or operation cycles). Fig 3.5 shows examples of three general shapes 

of degradation curves in arbitrary units of degradation and time: linear, convex, and concave. 

The horizontal line at degradation level of 0.6 represents the level at which the failure would 

occur. Randomness can be introduced, using probability distributions to describe variability 

in initial conditions and model parameters. Reference [31] has provided a method of using a 

semiconductor sensor to detect the by-product of transformer insulation deterioration and 

then finding the most appropriate by-product to be used as the degradation variable by setting 

up the relationship between measurements and service time. A natural next step is to estimate 

the parameters of the degradation model. 
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Fig. 3.5: Possible shapes for univariate degradation curves. 

3.3.3.2 Hazard function model 

A conceptual description of the deterioration process is effectively communicated using 

the hazard function. Consider the hazard function for a typical transmission equipment 

failure mode as shown in Fig. 3.6. In Fig. 3.6 we observe that there are 4 deterioration levels 

corresponding to four different hazard rate areas. Consider that the effect of a maintenance 

task could be to move the deterioration level from 3 to 1. The benefits from doing so are 

quantified in two ways: the failure probability is lowered by Ap, and the life is extended by At. 

The relative magnitudes of these two benefits depend on where the component is on the 

curve when the maintenance is performed. If the component is far to the right, then Apt At is 

large. If the component is far to the left, AplAt is small. 
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Fig. 3.6: Maintenance-induced improvements in failure probability and time 

3.3.3.3 Markov models 

Although the hazard function provides for a good depiction of how maintenance affects 

these two important reliability metrics, Ap and At, obtaining the hazard curve can be difficult 

with limited data; in addition, this approach requires that the continuous hazard function be 

discretized. A method based on Markov model [32, 33] was found to be more attractive in 

our study. This method uses a multi-state Markov model [34] adapted from [35] to compute 

hazard rates from condition measurements. 

Markov models provide an elegant and effective means of representing certain kinds of 

so-called "memory-less2" random processes, and degradation processes for many kinds of 

transmission equipment fall into this category, since the likelihood of being in any particular 

state in the next time period depends only on the state in which it resides in the current time 

period and not on the path of states taken to reach the current state. Although the 

deterioration process of component is continuous, we may discretize it in order to apply a 

continuous-time Markov chain (i.e., a continuous-time/discrete state Markov process) to it. 

Here we assume that we have the ability to characterize boundary conditions of different 

states of deterioration in terms of the condition measurements, via a specific deterioration 

function. Then we use the measurement data to estimate transition time between different 

2 A "memory-less" random process is one for which the conditional probability distribution for the future state of the process 
is independent of the past states of the process. In other words, the present "summarizes" the entire history of the process, 
i.e., all of the information contained in the values taken by the random variables of the past are contained in the random 
variable of the present. 
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states and thus calculate time to failure from each state, and also the benefit from 

maintenance, which is the hazard rate reduction or the life extension of the transformer. This 

model, illustrated in Fig. 3.7, is more fully described in section 3.4. 

Histoncal 
data c(t) 
t=l T 

Most recent 
observation 

c(T+l) 

Statistical 
Processing 

Level 1 À.12 Level 2 ^-23 Level 3 A.34 Level 4 
(new) (minor) (major) (failed) 

deterioration 
function 

g(G(T+l)) 

Fig. 3.7: Computing Contingency Probability Reductions 

3.3.4 Hazard rate and its reduction estimation based on Markov model 

Referring to the Markov model in Fig. 3.8, we assume that we have at our disposal a set of 

condition vectors c(t)=[c/(t) ,Ç2(t), ...,çK(t)] for K similar components taken over an extended 

period of time t=0,l,T, where each vector ck(t) provides M different measurements Cki(t), 

ck2(t), ...CkM(t) , on component k characterizing its condition at time t. Each of the J states of 

the Markov model represents a deterioration level. The particular representation of Fig. 3.7 

shows J=4 deterioration levels, and deterioration level j can be reached only from 

deterioration level j-1. However, the model is flexible so that any number of deterioration 

levels can be represented, and, if data indicates that transitions occur between non-

consecutive states (e.g., state 1 to state 3), the model can accommodate. The main features of 

this approach are described in what follows. 

(a) Deterioration function: The deterioration function, denoted by g(cjJ, may be an 

analytical expression if one is available or it may be a set of rules encoded as a program, 

consisting of a nested set of if-then statements that returns a scalar assessment value. For the 

model of Fig. 3.7, the assessment value would be a deterioration level 1, 2, 3, or 4. This 

represents a flexible and practical way of connecting our approach to the wealth of existing 
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knowledge and experience contained in the industry in regards to interpreting condition 

monitoring measurements. Often, such rules depend not only on the measurements ck(t) but 

also on the rates of change in such measurements. For example, reference [36] provides a 

comprehensive compilation of such rules for transformers developed by industry experts that 

identifies different measurements for characterizing various transformer failure modes. 

Examples of the most common measurements (and some of the failure modes they detect) 

include dissolved gas analyses results on main tank oil (insulation deterioration, deterioration 

of cooling system, oil pump failure) and load tap changer oil (oil dielectric weakening), 

thermography testing (magnetic circuit overheating, bushing overheating), ultrasonic testing 

(oil pump failure), partial discharge testing (magnetic circuit overheating), winding and oil 

temperature (deterioration of cooling system). 

(b) Transition intensities: The transition intensities between the various states of the model 

can be obtained from life-histories of multiple units of the same manufacturer and model. In 

the case of Fig. 3.7, \u, I23, and X34 are computed. Suppose we have a set of condition 

measurements ç(t)=[çi(t),ç2(t), ...,ckO)] for K similar components taken over an extended 

period of time t=0,1, where £k(t) for component k represents all measurements taken that 

characterize the component's condition with respect to a particular failure mode. Each 

measurement vector çjc(t) is processed by the deterioration function to associate a 

deterioration level with component k at time t. Processing the data for t=l,...,T enables 

identification of the time each component spends in deterioration level j. The estimated time 

spent in state j is the mean of these durations. Reasonable estimates of the desired transition 

intensities are obtained by inverting these mean duration times. This same processing of 

historical data enables identification of change in state caused by maintenance. 

(c") Failure probability: For a particular set of transition intensities, the transition 

probability matrix for the model shown in Fig. 3.7 is given by eq. (3.17). 

P = 

1 — A2 /L2 0 0 

0  l - J ,  ^  0 

0  0  l -A,  A,  

0 0 0 1 
(3.17) 

The state probability vector gives the probability that a component is in any particular 
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deterioration level at a given time, and is denoted by P(hT)-[Pi(hT) P2Q1T) Pi(hT) P4(hT)], 

where h=],2,3,..., and T is the time step. If at time t= 0, the component resides in 

deterioration level 1, then the initial state probability vector is P(0)-[1 0 0 0J. The 

probability of finding the component in any deterioration level at time hT is then given by 

f(AT) = f(0)*X (3.18) 

Given that at time t0, we know the component's deterioration level, this last equation 

provides the probability of residing in the failed state in any future time interval. We denote 

this failure probability for the J^h component as P(k). This probability is a function of the 

time-dependent physical condition of the equipment c(t). 

(d) Time to failure: The expected time to failure is captured by computing first passage 

times. First passage time is the expected value of the amount of time the process will take to 

transition from a given state j to another state i, under the assumption that the process begins 

in state j. From this computation, then, we may estimate the remaining life of the component. 

We utilize the method introduced [37] and to calculate the first passage time to failure as: 

7}=P(0)xTx(/-^(T))-' (3.19) 

where Tf is the vector of time to failure from different states, and Pr(T) is a partition of the 

transition matrix P corresponding to non-failure states [38]. The life extension Atk is obtained 

by calculating difference of time to failure of the states before and after maintenance. 

(e) Hazard rate reduction estimation: The level of each benefit from maintenance, with 

respect to a particular failure mode for a specific component, is associated with where on the 

hazard curve the component lies when the maintenance is performed. If the maintenance is 

performed during the deterioration period, e.g., at time tf in Fig. 3.6, the benefit comes 

mainly from the decrease of hazard rate, which results in a decrease in hazard rate Ap, but for 

maintenance performed during the constant hazard rate period, e.g., at time td, the benefit 

comes mainly from the life extension At because of delay of the deterioration period {td in 

Fig. 3.6). Good estimates of Ap and At resulting from a maintenance task may be obtained by 

statistically characterizing the failure mode deterioration level before and after the 

maintenance using condition assessment tools [39]. For a 4-level model in Fig. 3.8, if a 

particular maintenance task results in renewing a component to deterioration level 1, for 

example, then, if the component is in deterioration level 3, the probability reduction for 
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maintenance task m, Ap(m,k), is given by the last element of the 1x4 row vector resulting 

from the calculation: 

[l 0 0 0}P-[0 0 1 0]£ = [1 0 -1 0]P (3.20) 

Although the discussion of this section has focused on equipment-driven maintenance, the 

approach is also applicable to failures caused by tree-contact and associated tree-trimming 

maintenance. Here the condition vectors (measurements) Ck(t) for this failure mode consist of 

clearance between vegetation and power lines. The distance is evaluated with the vegetation 

growth model in [40]. Decreasing clearance intervals are assigned as discrete condition levels 

to conform to the model of Fig. 3.8, and transition rates between intervals computed from the 

condition data. The failed state is defined based on FERC requirements on distance between 

conductors and vegetation [41]. 

3.3.5 Hidden Markov Models 

The regular Markov model assumes that the deterioration function provides perfect 

identification of the state. However, it might not always be true in condition monitoring. This 

is largely due to the complicated nature of component deterioration processes. For many 

failure modes, such as insulation deterioration, we cannot monitor the dielectric strength of 

the insulation material directly but must use some by-product of the deterioration process as 

an indicator of the degradation, such as DGA data. This will bring some uncertainties of state 

identification due to the incomplete understanding or information about the deterioration 

process. To account for uncertainty in state identification, I investigated the applicability of 

the hidden Markov model (HMM). While the component is in a particular state, the 

probability is characterized that a particular measurement can be generated using a 

probability distribution. It is only the outcome, and not the state that is visible to an external 

observer, and therefore states are "hidden." This method is described in the following 

section. The following is a simple example of hidden Markov model [42]. As in Fig. 3.8, we 

have two states of atmospheric pressure: 'low' and 'high'. We suppose the transitions back 

and forth between the two states form a Markov process and the transition probabilities are 

P('High '| 'Low )-(). 7, P('Low '| 'High ')=(). 2 respectively. The atmosphere usually cannot be 

observed or felt by people without special devices, but it is closely related to the humidity of 

the air. The humidity of air tends to be high for low pressure and low (or dry) for high 
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pressure, and vise versa. So here we have two observations: 'rain' and 'dry', as shown in Fig. 

3.8. However, there are some uncertainties of the relationship between the humidity and the 

pressure of air. The observation probabilities are: P('Rain'\ 'Low)=0.6, P('Dry'\ 'Low')=0.4 

X).3 

0.7 High Low 

0.2 

0.4 
0.6 

0.4 

Dry Rain 

Fig. 3.8: Example of Hidden Markov Model 

So this forms the hidden Markov model, with states of atmospheric pressure (hidden 

states) and the observation of weather (observation or visual states). HMM is a statistical 

method that uses probability measures to model sequential data represented by sequence of 

observation vectors [43]. It is a composition of two stochastic processes, a hidden Markov 

chain, which accounts for real status of the deterioration, and an observable process, which 

accounts for observation we get from monitoring and tests. While the component is in a 

particular state, I characterize the probability that a particular measurement can be generated 

according to a particular probability distribution. It is only the outcome, and not the state that 

is visible to an external observer, and therefore states are "hidden". The objective of hidden 

Markov model is to determine the HMM parameters (transition rate, observation probabilities 

and initial probabilities), given observation sequences and general structure of HMM 

(number of hidden and visual states). 

3.3.5.1 Introduction of Hidden Markov model 

Initially introduced and studied in the late 1960s and early 1970s, the basic theory of 

hidden Markov chain was published in a series of papers by Baum and his colleagues [44, 45, 
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46, 47] and was widely used in speech recognition in the last twenty years of last century. 

The advantage of hidden Markov model (HMM) is that it can successfully represent the 

relationship between observations and the realities. It is a discrete-time, discrete-space 

dynamical system governed by a Markov chain. We have a sequence of observations, which 

are determined by the underlying (hidden) Markov process. In a particular state an outcome 

or observation can be generated, according to the associated probability distribution. It is 

only the outcome, not the state visible to an external observer and therefore states are 

'hidden' to the outside; hence the name Hidden Markov Model. The initial application of 

HMM is to use this model for training to understand the underlying speech pattern with the 

heard language. Today, most commercial speech processing software for speech recognition, 

speaker identification, and speaker verification are based on HMM. HMM is also used in 

industries for failure pattern reorganization and condition monitoring using current data [48] 

and acoustic vibration data [49]. I will use Hidden Markov model to investigate the hazard 

rate corresponding to the deterioration of oil in transformer, using dissolved gas analysis 

(DGA) data. 

Articulation of the algorithm used to develop an HMM requires definition of the HMM 

model 0 = {A, B, n) in terms of the three sets of probabilities comprising it, as follows. 

Assume that we have at our disposal a dataset of identified states (deterioration levels) and 

corresponding observations (test results). Suppose we have N states of the component 

deterioration level and M observation symbols. Here observation observations are the test 

results, as interpreted by the deterioration function g(c(t)), which identifies the insulation 

status of transformer. The set of state transition probabilities between the states, to be 

determined by the HMM algorithm, are denoted as A ={aij} and defined by 

where qt denotes the current state. The probability of obtaining an observation under a 

specific state, also to be determined by the HMM algorithm, is denoted as B={bj(k)} and 

defined by 

&, (&) = Xo, = vj ?, =./}, 1 ̂  y < //, 1 < t < M (3.22) 
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N 

Because the al} and the bj are probabilities, they must add to 1, i.e., =1 \<i<N and 
7=1 

M 

k=1 

The initial state distribution is determined by the latest observation, an input to the HMM 

algorithm, denoted by n = {ni}, and defined by n — p{qx = /'} 1 < i < N . The parameter set 

9 - {A, B, tc\ is what we are going to estimate and the method is introduced in the following 

section. 

3.3.5.2 Parameter estimation 

Estimating the transition matrix A={a.ij} is a learning problem: how to adjust the HMM 

parameters so that the given set of observations is represented by the model in the best way 

for the intended application. The most widely used method is the maximum likelihood 

estimation, which is to find the model which describes the observation sequence best, 

considering all unseen, possible state sequences. The training process is to get the optimal 

parameter 6 = {A,B,nj to maximize the likelihood of observation Llgt = p(0 | 6) . First 

specifying the total number of states for the model and then by estimating the parameters of 

an appropriate probability density for each state achieve this. As for the state transition 

matrix A, this information can only be obtained by using a prior experimental knowledge of 

the deterioration. In general, the observation can be raw data or some function of 

transformation of the data. 

There have been well-developed methods of doing this, like Baum-Welch Algorithm 

(also known as forward-backward algorithm) [50]. This method is used to train the model to 

fit the test data in the sense of MLE. Then we obtain the transition probabilities in each state 

and the probability of getting an observation each state. It can be explained into two-step 

procedures: 

1. Transform the objective function p ( 0  \  0 )  into a new function F(6, 6') that 

measures a divergence between the initial model 6 and upgraded model of 6\ 

2. Maximize the function F (6, 0) over 6' to improve 6 in the sense of increasing the 

l i k e l i h o o d  p ( 0  |  6 ) .  
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3. Continues by replacing <9 with 0' and repeating the two steps above until some 

stopping criteria is met. 

The following paragraphs give a detail illustration of the algorithm: 

Baum-Welch algorithm: 

Suppose we have a series of observations 0={oi,o2 , . .oT},  which might the gas (or fluid) 

result from every testing in our study. The o, can be a vector or a combined index indicating 

the general test result. Also we have classified the deterioration procedure of the component 

into different states from 1 to N. Then we have a set  of state transit ion probabili t ies A={AIJ} 
ay = p{qM = JI It = 0» 1 ^ U ̂  N (3-23) 

where q t  denotes the current state. 

We also have probability getting an observation with a symbol under specific state. 

b j ( k )  =  p { o t = v k \ q , = j } ,  1 < j < N ,  1 < k < M  (3.24) 

N M 

And so5>,y=l 1 < i < N  and ( k )  =  1 1 <  j  <  N  
7=1 k=\ 

And we also have the initial state distribution = {n t}, where n i  =  p { q x - i )  \ < i <  N .  

The parameter set {A,B,7i} here are values that need to be estimated and thus we can 

assume an initial value here. They will be updated during the training process. In the hidden 

Markov training, we need to define two auxiliary variables: Forward variable and backward 

variable. 

1) Forward variable: 

The forward variable is defined as the probability of the partial observation sequence 

0i,02,..0t, when it terminates at the state i. 

<%,(0 = Xo,,O2,O3'-,o,,9, =f )#) (3.25) 

Then we can derive 

a M U )  =  b j ( o M y £ J c c t ( i ) a &  1 < j < N ,  \ < t < T - \  (3.26) 
1=1 

where or,(7) =  7 r j b j ( o ] )  1 < j < N  (3.27) 

So the required probability is given by 
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X0|2) = ][er(z) (3.28) 
1=1 

2) Backward variable: 

The backward variable is the probability of the partial observation sequence ot-n,ol+2,..OT, 

given that  the current state is  i .  

A(0 = Xo,+i ,o ,+2,o ,+3, . . . ,Or  |  g,  = ; ,#)  (3 .29)  

There is a recursive relationship too here: 

A(0=EA+,( ;KAKi)  (3.30)  
j=i 

Where /?r(z') = l, 1 < z < TV (3.31) 

Further we can see that 

(OA (0 = 9, = ZI 1 < f < N 1 < f < T (3.32) 

And two more variables are needed in the calculation: 

3) Probability of being in state i  at time=f and in state j  at time=Z+/. 

^ 0 = ̂ {9, = = 7 I 0,<9} (3.33) 

It can be derived as 

=  f | ; i )*Xo ,+i,-,Or,9,+, = y |^  =( ,6*)  

^ (0a,/)wO')6,(o^,) (3.34) 
N N 

Z Z (')^i, A+, 0')^ (0,+, ) 
1=1 j=1 

4) Posteriori probability, which is the probability of being in state i  at time t ,  given the 

observation sequence and the model. 

r,(0 = p{q l  =i\o,e) (3.35) 

It is derived that 

r,(D ̂ 0 ' tV2e )= =i*XUl X<i<N><t<M (3.36) 
p{0W Z«,(i)A(0 " 

1=1 

With the assumed starting model 6  = { A , B , n } , we can start the training in the following 

way: 
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1) Use (3.26) and (3.30) to calculate the serial variable ' a's and ' /?'s. 

2) Using (3.34) and (3.36) to update the HMM parameters: 

=%(:), !<,'<# (3.37) 

ZXo,;) 
! < % < # ,  ! < ; < #  ( 3 . 3 8 )  

Ë/XO 

t=\ 

6,.(A:) = ̂ p !<;<#, 1<;<^ (3.39) 

t=1 

3) Update the HMM model parameters with (3.37)-(3.39). 

It has been proved [46] that after each iteration described above, either the re-estimated 

parameter set 6' = is more likely than original set 0 = {A,B,n} in the sense that 

p ( 0 1  6 ' )  >  p ( 0  | 0 )  or we have reached a stationary point of the likelihood function at which 

2 '=  2 .  

The Baum-Welch learning process updates the parameters of the HMM to maximize the 

quantity p{0 \X]. But first, we need initial values for the model 0 = {A,B,n}. Initial values 

for parameters of A can be obtained using the method of regular Markov model [34], or a 

distribution of A can just be assumed. Initial values for parameters of B are obtained by 

assuming they obey a normal distribution. The mean value and variance of the distribution 

can be either assumed or based on pre-studied distribution of measurement with different 

component conditions, if available. The initial values of parameters mn are, (0,...,1,...0) 

where the only non-zero element corresponds to the state indicated by the most recent 

observation. All of the initial value of parameter set 6 = {A,B,nj will be updated during the 

HMM training and will not affect the final result of parameter estimation. 

3.3.5.3 Incomplete data and local maximization 

For hazard rate estimation based on condition data, the observations might be incomplete, 

which means there are some periods t that we don't have the observation data available. 
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However, the HMM model requires an observation for each period t (i.e., the observation 

data must be continuous). This requirement might be satisfied for the case when the 

observations are obtained from online monitoring data but for data colleted from manual 

testing, it is likely that the data will have gaps. In such cases of incomplete data, if 

unobserved data dominates (which means the periods without observation is much more than 

those with observations), this might cause significant error in the HMM model training 

because the preset initial value will determine the stochastic process., since there is no 

observation in most period t to adjust the parameter set A = {A, B, n) in the training. So we 

must eliminate the effects of unobserved initials. Solution is to set the observation probability 

in each state will as 1 (or 1/N) at time t when there is no observation, which is: 

b . ( k )  =  p { o ,  =  v k  |  q t  =  j )  = 1/N, 1 < j < N, 1 <k<M,t e {unobserved period} (3.40) 

This means that at time t when there is no observation, the conditional probabilities that a 

specific observation will be generated are equal for every state. So only the observed data 

will take effect in the parameter estimation. 

3.4 Application of Hidden Markov model in hazard rate estimation 

The observation sequences for HMMs are completely general and can consist of any 

combination of data features. That means it can be applied to simulate the deterioration 

process represented by any condition monitoring data, or their combination. In this thesis, I 

will provide the applications of HMM in hazard rate estimation based on DGA data and on a 

scoring system, which is a combination of health data on insulation material. 

3.4.1 Estimation based on DGA data 

Dissolved Gas-in-oil Analysis (DGA) has been widely used throughout industry as the 

primary diagnostic tool for transformer maintenance. The detection of certain gases 

generated in an oil-filled transformer in service is frequently the first available indication of a 

malfunction that may eventually lead to failure if not corrected. Arcing, corona discharge, 

low-energy sparking, severe overloading, pump motor failure, and overheating in the 

insulation system are some of the possible mechanisms. One event or the combination of 
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some of them, as simultaneous events, can result in decomposition of the insulating materials 

and the formation of various combustible and noncombustible gases. 

One acceptable method for monitoring the deterioration of transformer insulating 

material involves calculating the total volume of gas evolved. The total volume of evolved 

gas is an indicator of the magnitude of incipient faults. Detailed evaluation information on 

concentrations for separate gases as well as the total concentration of all combustible gases is 

provided in [49], as shown in Table 3.1. Here conditions 1, 2, 3, 4 correspond to the 

deterioration levels 1, 2, 3, 4, respectively, in our Markov model. 

TABLE 3.1: DETERMINE TRANSFORMER CONDITION BASED ON DGA (IEEE STD. C57.104-
1991) 

Status 
Dissolved Key Gas Concentration Limits (| PPm) Status H2 CH4 C2H2 C2H4 C2H6 CO co2 TDCG' 

Condition 1 <100 <120 <35 <50 <65 <350 <2500 <720 
Condition 2 101-700 121-400 36-50 51-100 66-100 351-570 2500-4000 721-1920 
Condition 3 701-1800 401-1000 51-80 101-200 101-150 571-1400 4001-10000 1921-4630 
Condition 4 >1800 >1000 >80 >200 >150 >1400 >10000 >4630 

3.4.1.1 Parameter estimation 

Table 3.2 gives the DGA data of one transformer between two oil filtering maintenance 

tasks, which is the main maintenance task for addressing the oil deterioration failure mode. 

So I use all records taken between two maintenance tasks to simulate the deterioration 

process. The transition rates for the Markov model are given in Table 3.3. 

To validate the HMM performance, I compare the observation with the HMM results. In 

Table 3.4, Si is the status of the components with observation data, interpreted with the IEEE 

standards, and Se is the forecasted states predicted by the HMM, which is chosen as the state 

with the maximum probability of residing at that time t from the HMM training. We observe 

from the results that they match very well, indicating that the HMM can be used to simulate 

the deterioration process effectively. 

3 TDCG: Total dissolved combustible gas. The TDCG is the value of summation of total combustible gases. It does not 
include C02, which is not combustible. 
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TABLE 3.2: DGA TEST DATA FOR TRANSFORMER 

SAMPLE 
DATE 

H2 C2H4 C2H2 CH4 C2H6 CO TDCG 

15-Sep-95 3 9 0 19 4 539 574 
18-Sep-96 0 13 0 20 9 467 509 
09-May-97 0 9 0 30 3 578 620 
27-Aug-98 26 22 0 54 10 942 1054 
12-Apr-99 21 28 0 60 6 731 846 
10-Sep-02 305 691 0 648 192 657 2493 
15-0ct-02 569 1703 7 1364 451 552 4646 
22-Qct-02 573 1965 6 1637 520 643 5344 
28-Oct-G2 557 2002 7 1616 535 599 5316 
10-Dec-02 1 22 0 7 6 5 41 

TABLE 3.3: ESTIMATED TRANSITION INTENSITIES FOR MARKOV MODEL 

Transition Rate 1 2 3 4 

A u 0.9917 0.9936 0.9891 1.0000 
K.i+l 0.0083 0.0064 0.0109 0.0000 

TABLE 3.4: COMPARISON OF OBSERVATION AND FORECAST. 

Time (week) 1 54 87 155 187 366 371 372 

Si 1 1 1 2 2 3 4 4 

Se 1 1 1 2 2 3 4 4 

The probability we need to calculate is the instantaneous probability of the component to 

fail during the period of [hT, (h+l)T] given the condition that it survives to time hT, which is 

given by (3.41) 

f ((A + 1)T) - f(AT) 
XAT) = Pr(Ar<z<(A + l)r|x>Ar) = (3 41) 

\ - P Q i T )  

where P(hT) is the failure probability calculated in (3.19). Calculated instantaneous failure 

probability vs. time is shown in Fig. 3.9. 
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Fig. 3.9: Hazard rate of transformer oil deterioration 

Also we can use the results to calculate the change of failure probability after the 

maintenance for this particular transformer. The last record in Table 3.2 shows the 

maintenance (an oil change) was performed 377 weeks after the first record, which is the 

time of the previous maintenance. From Fig. 3.9, we observe that the failure probability at 

377 weeks is about 4E-3, and exact calculation yields ^ (377) =0.004354. Also the DGA 

records just after the maintenance were checked, and they indicated the oil was of course in 

very good condition, so that the computed failure probability was very close to 0. Thus we 

can calculate Ap, the change of failure probability after maintenance, to be 0.004354. 

We can also calculate the expected time to failure with the results from HMM. It is 

captured by computing first passage times, which is the expected value of the amount of time 

it will take to transit from a given state j to another state i, under the assumption that the 

process begins in state j. Letting state j be the current state and state i be the failed state, the 

first passage time, (3.19) provides an estimate of the component's remaining life. Table 3.5 

gives the results for components in each state, the average time to next state and the estimate 

time to failure. 

TABLE 3.5: FIRST PASSAGE TIME FOR EACH STATE 

State 1 2 3 
Time to next state (weeks) 120.5 155.4 91.9 

Time to failure (weeks) 367.8 247.3 91.9 
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The time between states, per observations as given in Table 3.4 may differ 

significantly from the expected time between states per calculation as given in Table 3.5. For 

example, referring to Table 3.4, the difference between the observation at time 366 and time 

371 might suggest that a state transition from state 3 to state 4 has occurred in only 371-

366=5 weeks. Yet Table 4.5 indicates the expected time to transition between state 3 and 

state 4 is 91.9 weeks, clearly much larger. The reason for this is that the observations of 

Table 3.4 are not necessarily at the time the deterioration process first enters the indicated 

state. Returning to our example, the process could have entered state 3 well before week 366, 

perhaps at week 281, in which case, if the process enters state 4 precisely at week 371, the 

time to transition from state 3 to state 4 would have been exactly 91 weeks, and in fact, Table 

3.5 tells us that if we considered a large number of such processes, 91 weeks would be the 

average of state 3 to 4 transition times. 

3.4.1.2 Parameter distribution estimation on a group of data 

To estimate from historical data all of the transition intensities for a given transformer's 

HMM, as in Table 3.3, it is necessary that the historical data contain oil samples spanning the 

entire range of possible conditions (or states). This may not be the case, particularly for 

newer transformers; in addition, it may be that a particular transformer's historical data does 

span the range of possible conditions, but the data for one or more states is very limited, e.g., 

some states may have only one or two recordings. These all-too-familiar situations of limited 

data are common, and we feel it essential to address this very practical issue. My approach is 

to develop probability models for the transition rates using a pool of similar transformers, 

and then to use these probability models to estimate transition intensities as initial input for 

HMM training, for a particular transformer when the historical data for that transformer does 

not allow it otherwise. 

I have used a pool of DGA testing data obtained for all transformers at a medium-sized 

utility company, and, for each transformer, computed the transition rates only between states 

for which data existed. The results are given in Table 3.6, with mean and standard deviation 

for each transition intensity given at the bottom of the table. I have also used (3.19) to 

calculate the first passage time between different states, and these calculations are provided 

in Table 3.7. 
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TABLE 3.6: TRANSITION RATE OF DIFFERENT STATES FOR TRANSFORMER INSULATION 
DETERIORATION 

ID X  J 2  X23 

1 0.0102 0.0036 0.0058 
2 0.0101 0.0064 0.0088 
3 0.0060 
4 0.0087 
5 0.0078 
6 0.0099 0.0082 0.0605 
7 0.0117 
8 0.0074 
9 0.0136 
10 0.0111 
11 0.0080 
12 0.0108 
13 0.0067 0.0075 
14 0.0129 0.0359 
15 0.0100 
16 0.0144 
17 0.0082 0.0061 0.0222 
18 0.0098 
19 0.0042 0.0069 0.0648 
20 0.0064 
21 0.0082 0.0055 0.0061 
22 0.0045 0.0130 
23 0.0116 
24 0.0082 0.0053 0.0066 
25 0.0147 
26 0.0052 
27 0.0043 
28 0.0088 

29 0.0052 0.0047 
30 0.0112 0.0062 0.0156 
31 0.0192 
32 0.0127 
33 0.0052 
34 0.0133 
35 0.0078 
36 0.0179 
37 0.0196 0.0108 0.0163 
38 0.0024 
39 0.0087 
40 0.0053 
41 0.0071 0.0062 0.0066 
42 0.0051 0.0062 
43 0.0075 0.0043 
44 0.0059 
45 0.0039 0.0051 0.0081 
46 0.0080 
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47 0.0101 
48 0.0055 0.0070 
49 0.0054 
50 0.0138 0.0054 
51 0.0047 
52 0.0034 0.0109 
53 0.0123 
54 0.0067 
55 0.0060 
56 0.0082 0.0088 0.0082 
57 0.0057 0.0130 
58 0.0043 0.0118 0.0119 
59 0.0079 
60 0.0099 
61 0.0134 

62 0.0085 
63 0.0117 
64 0.0120 
65 0.0064 
66 0.0121 
67 0.0086 
68 0.0092 
69 0.0069 
70 0.0083 0.0064 0.0109 

Number 56 28 18 

TABLE 3.7: FIRST PASSAGE TIME BETWEEN DIFFERENT STATES 

ID Ti2 (week) T23 (week) T34 (week) 

1 98.25 281.23 172.87 
2 98.52 155.28 113.70 
3 166.67 
4 114.94 
5 128.21 
6 101.01 121.95 16.53 
7 85.47 
8 135.14 
9 73.53 

10 90.09 
11 125.00 
12 92.59 
13 149.25 133.33 
14 77.52 27.86 
15 100.00 
16 69.44 
17 121.95 164.10 45.05 
18 102.04 
19 238.10 144.93 15.43 
20 156.25 
21 121.25 181.39 163.13 
22 222.22 76.92 
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23 86.21 
24 122.26 188.90 151.81 
25 68.03 
26 192.31 
27 232.56 
28 113.64 
29 192.85 213.26 
30 89.32 160.69 64.26 
31 52.08 
32 78.74 
33 192.31 
34 75.19 
35 128.21 
36 55.87 
37 51.02 92.59 61.35 
38 416.67 
39 114.94 
40 188.68 
41 140.85 162.27 151.68 
42 196.26 162.02 
43 132.65 233.06 
44 169.49 
45 256.41 196.15 123.26 
46 125.00 
47 99.01 
48 181.82 142.86 
49 185.19 
50 72.46 185.19 
51 212.77 
52 294.12 91.74 
53 81.30 
54 149.25 
55 166.67 
56 122.57 113.92 121.25 
57 175.44 76.92 
58 232.56 84.75 84.03 
59 126.58 
60 101.01 
61 74.63 
62 117.65 
63 85.47 
64 83.33 
65 156.25 
66 82.64 
67 116.28 
68 108.70 
69 144.93 
70 120.50 155.40 91.90 
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Although the deterioration paths for transformers differ, due to different design, 

cumulative loading through-faults, and environments, a general view of the condition or 

estimation of the failure distribution can be useful. I have developed probability plots to find 

the most appropriate distribution and corresponding model parameters to fit the data 

(transition intensities between states). From the chosen distributions, the transition intensities 

can be estimated based on MLE. 

Fig 3.10-3.15 are probability plots of first passage times between different states (which 

are the inverse of the corresponding transition intensities X12, hi, and l34). The distributions I 

have tested are: Normal, Lognormal, Weibull, Exponential, Logistic and Loglogistic 

distribution. 

Probability plot for Normal Distribution for A23 Probability plot for Normal Distribution for A34 Probability plot for Normal Distribution for Â12 
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Fig. 3.10: Normal probability plot for first passage times 
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Fig. 3.11: Lognormal probability plot for first passage times 
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Comparison of the plots in Fig. 3.11 to those of Fig 3.12-15 suggests that the log normal 

distribution may provide the best fit to the data. This finding is consistent with experience in 

modeling of other degradation processes [25]. 

L o g ( x )  ~  N o r m a l ( j u ,  a )  ^ 42) 

Also, with statistics tools, we can estimate the parameter of the lognormal distribution to 

describe the first passage time between different states, as in Table 3.8.The parameters 

( //, â ) is based on maximum likelihood estimation [25] and the 95% upper and lower 

confidential intervals were achieved with: 

CI = exp(// ± Z,_a/2 x â /4n) (3.43) 

where Z,_a/2is the quantile of normal distribution with a = 0.05 and n is the samples size. 

TABLE 3.8: MEAN VALUE AND CONFIDENCE INTERVAL OF FIRST PASSAGE TIME BETWEEN 
DIFFERENT STATES 

Firs Passage Time (weeks) Tn T23 T34 Time to failure 
Mean 117.87 145.97 82.01 345.85 

Lower limit of 95% Confidence Interval 105.88 135.37 67.69 308.94 
Upper limit of 95% Confidence Interval 131.22 157.40 99.36 387.98 

So we can get the results from Table 3.8, that for the sample of transformers, their mean 

time to failure (assuming no maintenance) is 345.86 weeks (or 6.65 years) and the 95% 

confidence interval is [308.94,387.98] weeks (or [5.94,7.46] years). 

It should be noted here that this result is corresponding to the transformer oil insulation 

failure. It can develop fast if not well maintained, comparing with other failure modes such 
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as mechanical failures. That is why utility companies need to inspect the oil quality every 

few months and perform proper maintenance (oil filtering, replacement) every several years. 

3.4.2 Estimation based on score system (health index) 

In the previous sections of this chapter, it has been assumed that insulation deterioration 

may be appropriately characterized using only DGA. Although DGA is arguably one of the 

best, if not the best indicator of insulation deterioration, it is not a perfect indicator, nor is it 

the other indicator. In fact, practitioners typically make use of a number of indicators, 

recognizing that each one gives a somewhat different view of the same problem, and that the 

best view is obtained from combining the information that is obtained from all of them. A 

standard method of combining this information is via a scoring system. In this section, I will 

make use of such a scoring system describe some testing towards that end that I have 

performed. 

Some research has been done on obtaining such a relative condition or health index for a 

failure mode. For example, [51] proposes a concept of health indices and developed rules of 

health indices, and [52] presents a method to map equipment inspection data to a normalized 

condition score and suggests a formula to convert this score into failure probability. 

However, these approaches attempt to characterize the general condition of the equipment 

rather than a specific failure mode. 

Our scoring system for insulation deterioration, based on various inspection date, is 

similar to that described in [51]. Suppose we have n inspection indicators (rl, r2,..., m) for a 

transformer, each of which describes some information about the insulation deterioration. We 

assume that each measurement may be normalized to the range of [1, 4] corresponding to the 

4 deterioration levels of the Markov model of Fig. 3.7. 

Each inspection item result r,- is assigned a weight w, based on its relative importance to 

overall equipment condition. These weights are typically determined by the combined 

opinion of equipment manufactures and field service personnel; they can be modified based 

on the particular experience of each utility company. The condition of the insulation is 

characterized by its condition score, as given in (3.44), calculated by taking the weighed 

average of inspection item results. 

Condition Score= ̂  w. rt + ^ w, (3.44) 
i=i i=i 



www.manaraa.com

52 

A condition score of 1 corresponds to the best condition; a condition score of 2 and 3 

indicate some deterioration has occurred to the insulation material; a condition score of 4 

indicates the equipment is in an emergency condition and needs to be removed from service. 

Table 3.9 gives an inspection form for power transformers. Table 3.10 illustrates 

normalization for the criteria 'age.' Table 3.11 gives the inspection items and the information 

they carry for transformer insulation deterioration conditional assessment. Table 3.12 

summarizes the condition scores for a single transformer (18 in Table 4.6) taken over a 

period of time from 1994 to 2000. 

TABLE 3.9: INSPECTION FORM FOR POWER TRANSFORMER 

Criterion Weight Score 
History Age (Years of operation) 8 

Loading History 3 

Inspection/maintenance 3 
Faults History 2 

Condition Solid insulation (Cellulose) 2 
Gas in oil analysis 5 
Gas in oil analysis (trend) 4 
PD test 1 
Water in oil 2 
Acid in oil 2 

Total 32 
Condition score (weighted average) 

TABLE 3.10: NORMALIZATION FOR CRITERION 'AGE' 

Age (years) Score 
<1 1.00 
1-20 
20-29 
29-32 
32-35 
35-39 
>=40 4.00 



www.manaraa.com

53 

TABLE 3.11 : INSPECTION TIMES AND CONDITION INFORMATION REFLECTED BY THE INSPECTION 

Criterion Condition information reflected by the inspection 

Age All parts including insulation material deteriorate under high thermal and 
electromagnetic stress. High failure probability occurs for aged 
transformer. 

Loading 
history 

Higher temperature due to heavy load significantly reduces the life of 
cellulose. 

Inspection/ 
Maintenance 
History 

Equipments with routine inspection and proper maintenance can stay in 
service for a long time. Well-maintained facility can maximally mitigate 
most 'hidden' faults that might cause potential failures. 

Fault History When a transformer is subjected to a through fault, some damage may 
occur. Gases can increase; vibration and sonic values also increase due to 
forces associated with the fault potentially causing looseness in the core 
supports/windings. 

Solid 
insulation 

Use CO, C02/C0 ratio & CO increase trend as indicator of cellulose 
condition 

DGA analysis Mineral oil decomposes by breaking carbon-hydrogen & carbon-carbon 
bonds. Combustible gases form in the neighborhood of faults. 

DGA analysis 
(trend) 

A rapid increase of a specific gas indicates severe problem in the power 
transformer 

Partial 
discharge 
Test 

Partial discharge occurring within insulation produces acoustic pulse, 
detectable at the tank wall. 

Water in oil By-product of oxidation of the cellulose. Significantly reduces dielectric 
strength of paper. 

Acid in oil Acids are produced as a result of oxidation of the oil. And the (H+) in 
acid speeds up oxidation. 

TABLE 3.12: INSPECTION RESULTS AND WEIGHTED AVERAGE SCORE FOR TRANSFORMER 

Date Age Loading 
History 

Ins/Maint 
History 

Fault 
History 

Solid 
Insulation 

DGA 
analysis 

DGA 
trend 

PD 
test 

Water 
in oil 

Acid 
in 
oil 

Weighted 
Average 

Score 
5/12/1994 2.75 1.15 1.0 1.0 1.0 1.0 1.0 1.0 3.0 1.0 1.58 
6/16/1995 2.95 1.15 1.0 1.0 1.0 1.0 1.0 1.0 4.0 1.0 1.69 
4/17/1996 3.06 1.15 1.0 1.0 1.0 2.0 1.0 1.0 2.0 1.0 1.75 
10/8/1997 3.36 1.15 1.0 1.0 1.0 3.0 1.0 1.0 1.0 1.0 1.92 
10/2/1998 3.56 1.15 1.0 1.0 1.0 4.0 1.0 1.0 3.0 1.0 2.25 
5/23/2000 3.88 1.15 1.0 1.0 1.0 4.0 1.0 1.0 1.0 1.0 2.20 
6/16/2000 3.90 1.15 1.0 1.0 1.0 4.0 1.0 1.0 1.0 1.0 2.21 
7/6/2000 3.91 1.15 1.0 1.0 1.0 4.0 1.0 1.0 1.0 1.0 2.21 

8/30/2000 3.94 1.15 1.0 1.0 1.0 4.0 1.0 1.0 1.0 1.0 2.22 
11/15/2000 3.98 1.15 1.0 1.0 1.0 4.0 1.0 1.0 1.0 1.0 2.23 

From the data we can see that not every condition indicator shows the same deterioration 

trend. This is because each indicator carries information on a specific portion of the 
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deterioration process. For example, loading history gives the thermal effect of heavy load on 

solid insulation material, whereas DGA provides information on oil condition under thermal 

and electrical stresses over time. 

To inject a degree of conservatism into the interpretation of the condition scores, we map 

the condition score to the various states according to Table 3.13, based on industry 

experience and field engineer suggestions. This mapping will provide that the failure state is 

reached when two or more of the individual scores are 4. 

TABLE 3.13: MARKOV MODEL LEVEL CRITERION BASED ON WEIGHTED AVERAGE SCORE 

State Score Mean Variance 
1 1-1.70 1.35 0.14 
2 1.7-2.0 1.85 0.18 
3 2.0-2.2 2.10 0.21 
4 >2.2 2.50 0.25 

We use the condition scores of Table 3.12, mapped to states via Table 3.13, in developing 

the HMM model. Resulting transition rates and first passage times between different states 

are shown in Table 3.14, and the corresponding hazard rate is shown in Fig. 3.16. 
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Fig. 3.16: Hazard rate of transformer insulation deterioration with score ranking system 

TABLE 3.14: TRANSITION RATE AND FIRST PASSAGE TIME OF TRANSFORMER BASED ON SCORE 
RANKING SYSTEM 
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Transition Rate 1 2 3 4 

A,, 0.9878 0.9890 0.9841 1 
A.i+y 0.0122 0.0110 0.0159 0 

7',-,,,(week) 81.98 91.21 63.07 N/A 

The scoring system method is attractive because it reflects more complete information 

about equipment condition; in addition, it builds on what many industry engineers already 

do. However, successful application of this scoring system needs relatively complete records 

of the component's conditions and rich experiences in adjusting the weighting factors from 

the field engineers. 

3.5 Bayesian Updating 

Another method of estimating hazard rates, is Bayesian updating based on condition test 

data. A Bayesian approach was developed in [53] for estimating the hazard rate of power 

transformers. Because power transformer failures tend to be relatively rare events, empirical 

data for parameter estimation (e.g., the hazard function or the transition rates in Markov 

model) are generally spare. Thus, Bayesian method becomes a natural means to incorporate a 

wide variety of forms of information in the estimation process. 

In the Bayesian framework, the uncertainties in the parameters due to lack of knowledge 

are expressed via probability distributions. This includes unknown distribution parameters. 

The Bayesian approach treats the unknown parameter, e.g., a or [3 in the Weibull 

characterization of the hazard function, or the transition rates in Markov model, as a random 

variable. Suppose T is an unknown parameter in our probability model. We first define a 

distribution, P(r), which generally aim to be as uninformative as possible. P(z) is the prior 

distribution which represents uncertainty about T based on prior knowledge, e.g. historical 

information. Then, the posterior distribution of T, given some observations of transformer 

condition monitoring data, is given by Bayes' Rule: 

P(data\r)P( T )  

(3.45) 
P{r\data) = • 

P(data) 

Here P{data) — jP(data\T)P(r)dT . Suppose the obtained condition monitoring 

information is represented by the following four attributes: x],x2,x3,x4 which may represent 

the DGA results, temperature, and other information. Then the conditional distribution 
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P (data\ R )  takes the form of P ( X ] , X 2 , X 3 , X 4 ^ T )  .  By the product rule of probability, the 

conditional distribution can be factored as: 

Jr)=^ (x, , a,, z,, r) x (X3 |z,, ̂ , r) x ̂  |x, ,r)x^ (%, |r) (3.46) 

If xl,x2,xi,x4 are independently distributed, Eq. (3.46) can also be written as: 

P(x,, x2, x3, x4 |T) = P (x, \T ) P ( X 2 I T ) P ( X 3  I T ) P ( X 4  |T) ^ 

The resulting posterior distribution in (3.47) is a conditional distribution, conditional 

upon observing equipment-monitoring data. Thus, by using the above Bayesian approach, we 

can continuously update the equipment failure probability model based on available 

equipment condition monitoring information. A Bayesian framework of updating equipment 

hazard function is illustrated in Fig. 3.17. 

h(t) 

Bayesian 

Update 

Assumed 

Probabilistic Model 

Condition Monitoring 

Information 

P=2 
z 

P=1 

V : • J 

Fig. 3.17: Bayesian Analysis of Equipment Hazard rate 

Reference [53] provides a Bayesian example for estimating transformer hazard rate by 

updating the hazard function. By using the above Bayesian approach, we can continuously 

update the transformer failure distribution based on available equipment condition 

monitoring information. The difficulty of this approach lies in the need of establishing the 

relationship (conditional distributions) between the monitoring data and the equipment's 

failure probability. 
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Chapter 4 Mid-Term Maintenance scheduling 

4.1 Introduction of Maintenance Asset Management 

4.1.1 Asset management in electrical transmission system 

Asset management is the process of actively allocating fixed economic resources in order 

to optimize the capture of revenue and maximize overall profitability. It utilizes a wide range 

of management decisions such as capacity allocation, asset purchase/lease decisions and 

pricing. It has become one of the most powerful levers in determining relative profitability in 

many business and most types of service provision [54]. 

In the electric power industry, asset management has become one of the most challenging 

problems today. It is concerned with the investment, operation, maintenance, replacement, 

and ultimate disposal of the equipment used to deliver electric power, including generation, 

transmission, and distribution facilities. Its increasing importance in recent years has 

occurred largely because the decreased availability of capital has inhibited investment in new 

facilities, and therefore companies in many cases have continued to maintain and operate 

increasingly aged equipment. As a result, companies find that maintenance needs often 

exceed available financial and human (labor) resources so that the problem to be solved is 

not what are the minimum resources needed to achieve a particular reliability level, but 

rather, what is the maximum reliability level that can be achieved with a limited amount of 

resources. 

Asset management decision problems have the following characteristics: 

1. There are strong interdependencies between physical performance of individual assets, 

physical performance of the overall system, and economic system performance; 

2. Resources such as budget and labor, are limited; 

3. There exist important uncertainties in individual component performance, system loading 

conditions, and available resources; 

4. There may exist multiple objectives, e.g., system performance and economic efficiency. 

These four characteristics are coupled and involve resource allocation with the objective 

to minimize cost and risk. The industry has made and continues to make major strides in 

developing solutions. However, there has been significantly less progress in data 
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management, information processing and associated algorithms, risk assessment methods, 

and decision-making paradigms, especially in process coordination. The goal in this work is 

to develop strategies in asset management of transmission systems, especially in maintenance 

selection and scheduling, which can coordinate these solutions effectively and systematically 

and develop corresponding methods and algorithms. 

For vertically integrated utility companies, maintenance practices receive a significantly 

larger percentage of resources for generation than for transmission and distribution (T&D) 

because the generation equipment represents a much larger percentage of the total capital 

investment in facilities. However, for today's companies that own and/or operate 

transmission and/or distribution circuits but little or no generation, the T&D assets represent 

almost all of their capital investment. The total replacement value of the lines alone 

(excluding land) has been conservatively estimated at over $100 billion dollars [55] and at 

least triples when including transformers and circuit breakers. As a result, maintenance of the 

aging T&D facilities is a high priority, and the percentage of resources allocated is high 

relative to the vertically integrated company. It is largely this fact that has motivated the high 

industry-wide interest in T&D asset management as well as the work reported herein. This 

work focuses entirely on transmission maintenance, although the concepts are applicable to 

distribution maintenance as well. 

4.1.2 Current maintenance scheduling methods 

The purpose of maintenance is to extend the component's lifetime or at least the mean 

time to the next failure. Maintenance approaches may be divided into two basic classes, 

corrective maintenance and preventive maintenance [3]. In corrective maintenance (CM), 

also known as run-to-failure, a piece of equipment is not maintained until it fails. This 

approach is appropriate when the cost of failure is not significant, which is obviously not 

suitable for most transmission system equipment. In preventive maintenance (PM), on the 

other hand, the maintenance is performed in order to avoid a failure. Preventive maintenance 

strategies may be further divided into several different types: time based maintenance, 

condition based maintenance, and reliability centered maintenance (RCM) [56]. Time based 

maintenance is usually a conservative (and costly) approach, whereby inspections and 

maintenance are performed at fixed time intervals, often, but not necessarily, based on 

manufacturer's specifications [57]. Condition based maintenance triggers a maintenance 
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from information characterizing the equipment condition, since condition monitoring may 

identify incipient failures [ 58 ]. Relative to time based maintenance, condition based 

maintenance typically extends the interval between successive maintenances and therefore 

typically incurs less cost, although it requires a significant amount of infrastructure 

investment (e.g., sensors, diagnostic technology, communication channels, data repositories, 

processing software) to measure, communicate, store, and utilize the necessary information 

characterizing the state of the equipment. Reliability centered maintenance, on the other 

hand, utilizes condition monitoring information together with an analysis of needs and 

priorities and generally results in a prioritization of maintenance tasks based on some index 

or indices that reflect equipment condition and the equipment importance. Fig 4.1 gives the 

overview of the classification of different maintenance strategies [59]. From this figure, we 

can see that the reliability centered maintenance accounts for both importance and condition 

of the facilities. 
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Fig. 4.1: Classification of maintenance 

Reliability centered maintenance is an on-going process which determines the 

maintenance practices to provide the required reliability at the minimum cost. It can help 

reduce the cost of maintenance significantly. In this work, RCM has the following attributes: 

The condition information is used to estimate equipment failure probability. 
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Failure consequences are estimated and utilized in the prioritization of the maintenance 

tasks. 

Equipment failure probability and consequence at any particularly time are combined 

into a single metric called risk. 

Equipment risk may be accumulated over a time interval (e.g. a year or several years) on 

an hour-by-hour basis to provide a cumulative risk associated with each piece of 

equipment. 

The prioritization (and thus selection) of maintenance tasks is based on the amount of 

reduction in cumulative risk that is achieved by each task. 

Scheduling of the maintenance tasks are performed at the same time as the selection, 

(using optimization algorithms), since the amount of reduction in cumulative risk 

depends on the time a maintenance task is implemented. 

RCM is a strategy for examining assets in a systematic manner to establish priorities 

with the final objective to maintain reliable performance of each component with cost 

effective maintenances. The concept of RCM was first developed in the commercial sector to 

optimize the maintenance procedure in the airline industry. The result was a report entitled 

"Reliability-Centered Maintenance", which became the foundation for modern day RCM 

processes [60]. Today, a number of processes called RCM are applied in nearly every major 

sector of industry, such as gas pipelines [ 61 ], mass traffic system [ 62 ], and 

telecommunications [63]. The underlying principle in RCM is that maintenance scheduling 

should be related to the failure likelihood so that a piece of equipment is maintained when its 

failure probability increases significantly. In electric power systems, different reliability 

centered maintenance strategies have been studied and applied in with different objective 

functions and optimization methods. Many methods utilize different heuristic indices to 

represent the priority of the maintenance tasks, such as using a benefit-cost ratio [64], health 

index (probability of system being in 'healthy' state) [65], expected energy not supplied [66], 

and some weighted combinations of statistics of component performance [67]. Other 

methods use objectives like minimizing the cost of maintenance and operation, while 

satisfying system reliability constraints [68]. Shahidehpour [69] developed a method of 

describing objectives and constraints of the maintenance scheduling in the restructured power 

system. He also categorized the maintenance activities into different time scales (mid-term 
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and short-term). W. Li in BC Hydro [66] uses Monte-Carlo simulation method and linear 

programming optimization model to perform the reliability evaluation of the transmission 

system with planned outage, and then schedules the maintenance with regard to the system 

operation constraints. 

Comparing to the current RCM strategies, the work described in this chapter utilizes risk 

assessment instead of heuristic indices and instantaneous hazard rate estimation instead of 

constant hazard rate. In addition, a novel optimization method and resource reallocation 

solution is developed to implement a systematic maintenance solution which enables the 

asset manager to allocate resources strategically and economically. 

4.1.3 Maintenance scheduling in different time horizons 

Transmission maintenance scheduling is an optimization problem with complex 

constraints. The schedule may span over several time periods and may impact the reliability 

of the system. It can be divided into long-term, mid-term and short-term maintenance 

scheduling methods, each of which is unique due to the objective and available data. 

Maintenance strategies for different time scales should be incorporated. Shahidehpour has 

worked on maintenance scheduling under deregulated market and developed a means of 

coordinating maintenance scheduling for mid-term and short-term transmission maintenance 

[69]. Maintenance scheduling strategies with different time scale and their scheduling 

constraints and methods are introduced as follows: 

1. Long-term transmission maintenance scheduling: Long term maintenance scheduling is 

based on individual component performance and the objective is to maximize the residual 

life of equipments while minimizing the cost of maintenance and inspection plus the cost 

of repair and replacement. The typical result of such analysis is recommended 

maintenance/inspection interval (usually in the units of years) for components. The 

impact on the network is normally not considered. 

2. Mid-term transmission maintenance scheduling: In mid-term transmission maintenance 

asset management, the scheduling is based on the forecast of network and loading 

condition for a period of time (usually one year), with limited resources to be allocated in 

the maintenance period. The period is divided into intervals (e.g., weeks) and a 

maintenance scheduling strategy for the intervals is derived to satisfy all scheduling 
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constraints and maximize the system reliability level with the condition of load 

variations. The key point here is that in a budget cycle, allocation of available economic 

resources for performing maintenance on a large number of facilities can be done 

strategically, as a function of risk (associated with the cost of network redispatch and 

component damage) so as to minimize risk of wide-area transmission system failures. 

3. Short-term Transmission Maintenance Scheduling: Both bilateral and nodal priced 

electricity markets are heavily impacted by transmission outages, and reliability criteria 

cannot be violated. Identifying precise day and time for maintenance tasks that require 

transmission equipment outage requires a significant amount of human attention, using 

power flow programs together with generation schedules, and forecasted loadings, during 

the few days or even hours preceding the task [69]. 

So we can see that maintenance scheduling with different time scale should be 

coordinated. Long term maintenance scheduling gives the recommended maintenance 

interval for every component. Mid-term scheduling give the allocation of maintenance 

resources to optimize the system reliability and short-term scheduling decides the best time 

for performing the maintenance to maximize the revenues, with the constraint of contracts 

and transactions. Figure 4.2 depicts the incorporation of maintenance schedules for different 

time scales. In this chapter, we will focus on the mid-term maintenance scheduling of 

transmission equipment. 
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Fig. 4.2: Transmission maintenance incorporation for different time scales 
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4.1.4 Structure of the Mid-term maintenance scheduling 

The risk-based maintenance approach has three steps: 1) long-term simulation with risk-

based security assessment performed at each hour, 2) risk reduction calculation, and 3) 

optimal selection and scheduling. These steps are illustrated in Fig. 4.3, and taken as a whole 

are referred to as the Integrated Maintenance Scheduler (IMS). Here, the long-term 

sequential simulator, when integrated with hourly risk-based security assessment capability, 

provides year-long hourly risk variation for each contingency of interest. The risk-based 

security assessment performs a contingency analysis for each hour using power-flow analysis 

for overload, cascading overload, and low voltage, and continuation power flow for voltage 

instability analysis. 

The year-long hourly risk variation, when combined with a set of proposed maintenance 

activities and corresponding contingency probability reductions, yields cumulative-over-time 

risk reduction associated with each maintenance activity and associated possible start times. 

This cumulative risk-reduction captures, cumulatively over the next year (or more), the 

extent that failure of the component will adversely affect the system or other components in 

the system. Then, step 3) is an optimization whereby we select a number of task-time 

options subject to the constraints on feasible-times, total cost, and labor, with the objective to 

maximize the cumulative-over-time risk reduction. 
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Fig. 4.3: Integrated Maintenance Scheduler (IMS) 
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4.2 Risk assessment of electrical system 

The deterministic method, where all contingencies in a designated category, or Hist, 

must satisfy some performance criterion, has been the primary means of performing power 

system security assessment for a long time. However, it does not yield a quantitative 

evaluation of security level which can be used within the objective function of a 

mathematical program. As a result, I have used the risk-based security analysis on 

transmission maintenance scheduling [70] in the process developed to optimize maintenance 

resources. 

4.2.1 Computation of risk 

The risk index is an expectation of severity, computed by summing over all possible 

outcomes the product of the outcome probability and its severity (or consequence), as in Fig 

4.4. By assigning severity values to each contingency, the risk can be computed as the sum 

over all terminal states of their product of probability and severity, given by eq. 4.1 : 

Risk(Sev | X J = ][Pr(Ej)Sev(Ej | X J (4.1) 

op IT afin G 

c imdilimi» 
(loading, una 

com in and 
dispatch 

Sekvtcd' v 
near-future 
(ontingeiuv 

Redispatch cost due to the 
contingency 1 

Redispatch cost due to the 
contingency i 

Redispatch cost due to the 
contingency N 

Risk at 
time t 

Fig. 4.4: Illustration of risk calculation for a given operating condition 

Here: 

• X/ is the forecasted operating condition at time t, generally specified in terms of loading. 
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It is the expected value of the loading condition at time t. 

• Ei is the ih contingency. Pr(Ej) is the instantaneous probability for the ith contingency. 

Here, we assume the existence of a contingency list. 

• Sev(Ei\Xtf) quantifies the severity, or consequence, of the ith contingency Ej occurring 

under system operating condition at time t. It represents the severity associated with 

problems caused by the contingency. It can be very versatile according to the concern of 

the utility company. It can be represented with indices associated with network security 

problems such as overload, low voltage, voltage cascading, and cascading overloads. Our 

approach for evaluating this function is based on post-contingency power flow analysis 

for redispatch cost due to the contingency. I will further describe the severity functions in 

the next section. 

4.2.2 Modeling of severity 

Severity provides a quantitative evaluation of what would happen to the power system in 

the specified condition in terms of severity, impact, consequence, or cost. CIGRE Task Force 

38.02.21 [71] identified it as a challenging problem in probabilistic security assessment. One 

measure that is widely thought appropriate is loss of load. We have consistently resisted 

using such a measure because it is only an indicator and not indicative of what would really 

happen, yet it requires significant additional modeling and computation. To make the point, 

consider a line loaded to 105% of its emergency thermal rating. It is unlikely that an operator 

would interrupt load to off-load this line. Most likely, the operator will try to re-dispatch one 

or more generators to reduce the loading on the line. In many cases, an operator may even do 

nothing if the overload duration is relatively short. But a load-interruption based consequence 

measure would apply some criteria/algorithm to identify the load interruption necessary to 

reduce the line loading to 100%, in spite of the fact that load interruption would not occur. 

Although evaluation of the consequence in this way may be useful, it is not worth the 

additional computation if other approximations can be found that are easier and faster to 

compute. 

In addition, measuring consequence in terms of load interruption is only a measure of 

system consequences following an outage. There are consequences specific to the 

component, i.e., equipment damage, which are especially important in modeling the severity 
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of a transformer failure. As a result, I decompose the evaluation of consequence following 

failure of a component as summation of its system and component impacts. 

Sev(E,,X^) = Sev^(E;,X^) + Sev^,^(Ei,X^) (4.2) 

4.3 Risk based long term simulation 

Cumulative risk assessment performs sequential, hourly simulation over a long term, e.g., 1 

year, and it evaluates the security levels in terms of quantitative indices such as redispatch 

cost The risk index for a single contingency is an expectation of severity, computed as the 

product of contingency k probability p(k) with contingency severity sev(k\m,t), where m 

indicates the mth maintenance task and thus the network configuration in terms of network 

topology and unit commitment, and t indicates the hour and thus the operating conditions in 

terms of loading and dispatch. The risk is given by R(k,m,t)= p(k)sev(k\m,t)). A reference 

"basecase" network configuration (with no maintenance task) is denoted with m=0. The 

severity function sev(k\m,t) comprises two parts: system related severity function sevsys(k\m,t) 

and component damage severity function sevcomp(k\m,t). The system related severity function 

sevsys(k\m,t) captures the contingency severity in terms of redispatch cost due to the 

contingency, while sevcomp(k\m,t) describes severity related to component damage and repair 

cost. 

The contingency risk associated with any given network configuration and operating 

condition is computed by summing over the all N contingencies: 

0 = E (& I m, f) + (& I m, 0] (4.3) 
k~\ 

If there are no maintenance tasks, contingency probabilities are assumed constant, but risk 

still varies with time because operating conditions and therefore contingency severities vary 

with time. 

The long-term cumulative risk simulator performs a full N-contingency security assessment 

for each hour in the year, and associated risk indices are computed per eq. (4.3). A 

contingency list is developed to reflect outages that may occur as a result of transmission 

equipments failures such as transformer and tap changer failure, tree contact and circuit 

breaker's failure to open. Given a contingency set, the simulator develops the power flow 

case and then, for each contingency, performs an optimal power flow to calculate the extra 
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redispatch cost needed to avoid system overload, as severity of the contingency. The 

sequential approach used in our simulator evaluates a trajectory of operating conditions over 

time. The key features that drive the design are: (1) Hourly assessment: In making a one-year 

risk computation, some components may see highest risk during off-peak or partial-peak 

conditions, when weak network topologies, weak unit commitment patterns, or unforeseen 

flow patterns are more likely to occur. (2) Sequential simulation: Load-cycles, weather 

conditions, unit shut-down and start-up times, and maintenance strategies are examples of 

chronologically dependent constraints that affect system reliability. 

4.3.1 System severity 

Redispatch is a common operation when a contingency brings some threat to the system 

security, and we believe the cost of redispatch is an evaluation of the most direct 

consequence of the contingency. When a minor contingency occurs, if it does not bring much 

security concern to the system, usually a redispatch is not necessary. Redispatch is needed if 

a reliability criterion is violated, such as line overloads. Then the severity can be evaluated 

with the cost due to the redispatch. 

Since branch failure due to overloading is a relatively slow process, a system operator 

usually has the time needed to perform redispatch so that the power flow of related line is 

adjusted to its nominal limit. In order to simulate the action of system operator, I use a linear 

program to model what a system operator will do to minimize the cost of redispatch. The 

system severity of the contingency can be defined as difference of extra cost of the redispatch 

due to the contingency: 

S e v { E j  \ X t ) : =  C o s t ( E j  \ X t ) ~  C o s t ( 0  |  X t )  (4.4) 

where Cost{Ei | Xt ) and Cost(0 | Xt) is the cost of energy production under contingency E i  

and normal condition of the system respectively. 

The minimization of redispatch cost is achieved by utilizing DC Optimal Power Flow 

(DC OFF) and the objective function is: 

M i n : C o s t =  ^  C o s t ( P G m  ) (4.5) 

where the Cost(PGm) is the cost function of generator m. Ng is the number of the generator. 

The cost curve is represented as multiple segments linear cost functions, as shown in Fig. 4.5. 
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P min P, max 

Fig. 4.5: Piecewise linear cost functions 

Table 4.1 gives an example of the incremental cost of a machine with the increase of the 

output. One generator represented by a piecewise linear cost function is segmentized with an 

incremental cost associated with each segment. So the total cost of the machine is 

represented by: 

NG«i 
= (0 (4.6) 

1=1 

where Nom is the total number of the segments in Fig 4.5, and aj is the incremental cost for 

each segment. P,„(i) is the output of generator m in the segment i, with its maximum as the 

length of the segment. Due to convexity, where incremental cost increases with the increase 

of output, as in Table 4.1, the optimal programming will guarantee that for each generator 

output Pm(j) ~0, (j>i) before Pm(i) reaches its maximum. 

TABLE 4.1 : EXAMPLE OF INCREMENTAL COST OF MACHINE WITH THE INCREASE OF THE OUTPUT 

(MW) Incremental cost ($) 
79 25.575 

155 25.575 
174 25.8323 
194 26.6848 
212 28.1325 
230 30.1754 
249 33.1297 
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The vector of generator output is represented as 

PG = (PG„PG„A ,PG» / (4.7) 

N „  

where NG = ̂  NCm is the total cost function segments for all the generators in the system, 
m ~ \  

and PG, is the output of each segment accordingly. 

The objective function in (4.5) is subject to the following constraints: 

PG'™X > PGm >0, me (1, A , Nc ) Each generator generates between 0 -> PG™X 

The power flow in each branch (line or transformer) is 
riPBr>-rB,>-r,FBr, liJdbyitsrating; 

B t x 6 - P'"JEA = (PG - PD) DC power flow equations; 

(D3 x A) x 9 - PB = 0 Branch flow equations; 

where 

NB is the total number of branches ; 

PGm is the real power generation of generator m; 

PG™X and PG™" are the maximum and minimum real power generation of 

generator m respectively; 

PBi is the real power flow in branch z; 

PB,niax is the short term rating (MVA) of z; 

yi is the constant factor to account for the power factor of the power flow in branch i 

and 1 > >0; 

B T is the ./V x N B - matrix used in DC power flow and N is the number of buses; 

A is the NBxN adjacacy (or incidence) matrix; 

D is the NB X Nb diagonal matrix where the i'h diagonal element is the admittance of 

the i"' branch ; 

0 is the N x 1 vector representing the voltage angles in radius at each bus; 

P"lject is the N x 1 vector representing the net power injection for each bus, and its element 

can be calculated byff ' = PG,. - PD,. 

In order to solve the above linear programming problem, we need to standardize the 

above inequalities and equalities so that it can be solved with standard LP methods in most 
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commercial software. The objective function and the constraints are specified in the 

following standard format: 

Objective: 

Constraints: 

max fT •x 

^ 
lb < x < ub 

(4 8) 

(4 9) 

(4.10) 

We define 

PG = 

/ PG, ^ 

PG2 

M 

,PG. 

PGmax = 

PG,™" 

PG™ 
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\ for \ "c V(/V.xl) 
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(4.11) 

(4.12) 

pQmm = PG 

I 

PG 

2 

M 

N<; 

PBmm = 

\ /(#,xl) 

X = (fG^ 6?f) 

^ - y,?#™ ^ 

-

M 

— v PRnm 

V YNB NB J( N B X \ )  

0mm = 

f - n ^  

- n 
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V 71J (N*I) 

(4.13) 

(4.14) 

f i  
\a T

n  when i  e [1,7VC] 

I 0 when / g [1, N0 ] 

(4.15) 

where am is the coefficient of the linear piecewise cost function corresponding to PGn 

eq 
0 I 

\Jn*ng 

^ B X ^ B  
0 — B Nx N x N  

(4.16) 
/ ( N „  +  N ) x ( N a  +  N s  +  N )  
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where the submatrices A, D, and B inside Aeq are what we have defined at the beginning of 

this section, and / is the identity matrix. 

f°) 

II J (4 17) 

V J( N B  +  N ) X 1 

•P(jmaX N \ 

ub = pp max (4.18) 
nmax 

v / 

Z p(Jm'n X 

lb = — 
pg max (4.19) 
^min 

After solving the LP to obtain a feasible solution for x, we get the minimum cost of the 

economic dispatch of the system, based on current network condition which is characterized 

by the matrices A,D,B and loading conditions PD. Then we can calculate the risk of the 

system with (4.3) and (4.4). 

4.3.2 Component severity function 

The system severity function described above represents the system consequence in terms 

of operational corrective actions such as redispatch cost necessary to relieve the reliability 

violations following an outage of a circuit. The representation is reasonable under the 

following assumptions: 

1. The failed equipment incurs no physical damage. 

2. There is little variance in outage time for the failed equipment. 

These two assumptions are not unreasonable for failed transmission lines. On the other 

hand, they are inappropriate when the failed equipment is a transformer, since: 

(a) transformer failure can potentially involve significant physical damage 

(b) transformer outage time may vary significantly as a function of 

i. the extent of the damage, 

ii. the availability of a spare and whether the spare is on-site or not 
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I make two modifications to the severity function to account for these issues. First, to 

account for transformer damage, a non-zero value of component severity function Sevcomponent 

in eq. (4.2) is provided. Assuming, conservatively, that any transformer failure requires its 

replacement, the component severity function, which represents the cost of purchasing a new 

transformer of the same MVA rating, is given by eq. (2.4): 

Severn, (2, IJT, ) = C x (4.20) 

where MVArated is the MVA rating of the transformer and C is a constant of proportionality 

that can be obtained based on eq. (4.21): 

^ replacement cost of a 100 MVA xfmr 
c = - ï5o (4'21) 

where obviously the replacement cost of a 100 MVA transformer must be estimated. I have 

used the estimates of replacement cost as $1,000,000. These estimates yield 

C=$10,000/MVA. 

Second, it is also reasonable to account for variation in transformer outage duration, 

based on the availability of spares, we require input data for each transformer indicating 

whether there is no spare available, an available off-site spare, or an available on-site spare. 

Because outage duration affects the system consequences, the information on spares is 

utilized to scale the system severity functions according to Table 4.2. 

TABLE 4.2: SYSTEM SEVERITY SCALING FACTORS 

Availability of spares System severity scaling factor 
No spare 10 
Off-site spare 5 
On-site spare 2 

The implications of the scaling factors in Table 4.2 are that the redispatch costs for 

transformer outages with 

no spare will be 10 times that of replacement cost of a transfomer 

off-site spare will be 5 times that of replacement cost of a transformer 
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• on-site spare will be 2 times that of replacement cost of a transformer 

and these factors should be adjusted based on field engineer's suggestion for each individual 

transformer. 

4.3.3 Components modeled in the simulation 

Different types of equipments and the consequences of their failures should be modeled 

in the simulation. In my simulation, I have modeled several failure modes of the components 

in transmission system, as listed in Table 4.3. 

TABLE 4.3: FAILURE MODES AND CORRESPONDING MAINTENANCE ACTIVITIES 

Contingency Failure modes Maintenance activity Frequency 
Transmission 
line outage 

Tree contact Tree trimming 1 per year Transmission 
line outage Line or 

equipment 
failure 

Insulator cleaning, replacement and 
hardware tightening/replacement near the 
tower position. 

1 per year 

Transformer 
outage 

Core problem, 
mechanical 
failure and 
general ageing 

Transformer major maintenance (complete 
analysis including parts replacement, 
complete off-line testing and corresponding 
maintenance and oil change.) 

1 per 6 years Transformer 
outage 

Oil 
deterioration 

Transformer minor maintenance: (annually 
test and oil filtering makeup including some 
minor maintenance and oil analysis and 
filtering). 

1 per year 

Circuit 
Breaker 
Failure 

Mechanical 
failure, 
excessive wear 
and 
maladjustments 

Circuit breaker inspection and maintenance 
(visual inspection and operation test, repair 
and replacement of the cracked mechanical 
parts and polish the contact surface, 
lubrication) 

100 operations 

In utility maintenance practice, they usually perform a package of maintenance activities 

at the same time instead of performing each preventive maintenance corresponding to each 

failure mode at different time. This is because many inspection or maintenance activities may 

request the component to be removed out of service, or even opened or disassembled. So by 

scheduling the inspection and maintenance activities at the same time may reduce the 

frequency of the outage and the cost of maintenance. 

For transmission lines, tree contact and insulator failure are the two most common failure 

modes. For transformers, mechanical failure and insulation oil deterioration are the two most 

common failure modes. For circuit breaker, the failure which is caused by mechanical 
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excessive wear and maladjustments is a major failure mode and could cause the failure of 

protection action. Here, I only consider the failure to open of circuit breaker, which is failure 

to isolate the fault location, as the result of this failure mode. Because it could result in high 

cost of repair, damage to other components and instability of the system. 

In simulator, the failure of transmission lines and transformers are similar as the outage 

of the equipment and thus the outage of corresponding transmission lines. The failure of 

circuit breaker should be combined with other failure during its protection region. So this is a 

higher order contingency and its hazard rate should be achieved with the information of 

system configuration and topology data, together with probability analysis [72]. In the 

simulator, an assumption was made that for each fault circuit breaker, all of its neighboring 

circuit breakers function well and will open to isolate the fault area. The fault area was 

searched in the simulation to get the system configuration of post contingency and 

corresponding redispatch cost was calculated. 

4.3.4 Speed enhancement 

The sequential simulator performs contingency-based risk assessment for each hour in 

the year. If there are N contingencies, 8760 x N different risk assessments must be 

performed. This is computationally intensive, so decreasing the computation time is an 

important concern. The most important speed enhancement I have used here is to avoid 

redundant assessments for similar operating conditions. 

The number of hours that actually have a full contingency analysis performed for them 

can be reduced significantly without diminishing the integrity of the resulting information 

content. The idea is to compare the conditions of the next hour and all previously 

encountered conditions. If this comparison indicates that two conditions are sufficiently 

similar, then the computations for the next hour can be avoided and the computed risks for 

each contingency are assumed to be the same. To identify the similar hours the following 

method is used: 

1. Determine the previous hours that have the same network topology as that of next hour. 

Then compare the load profile and generation profile of next hour, denoted as hour j, with 

that of the hours having similar network topology. If for previous hour i, for all buses k, 
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the following criteria are satisfied, hour i is said to be similar to the next hour. In this 

case, the result of hour i is used as the result of the next hour. 

abs 
f P  - P  X  

rgki rgkj 

P 
eg and abs 

r P  - P  ^  gki gkj 

GKJ J 

< c (4 22) 

abs 
r P  - P  x  

rlki rlkj 

P V Iki 

< s 311(1 abs 
r  P -  P ^ 1 Iki 1 Ikj 

P 
< E (4.23) 

Here Pgu is the generation at bus k at hour i and Pm is the load at bus k at hour i. I have 

used 8=0.01 in my studies. 

2. If there is no previous hour that has the same topology as that of next hour, or if none of 

the hours with the same topology satisfy the criteria presented above, then proceed as 

follows: 

a. Calculate the load flow of the next hour; 

b. Identify the branch with the lowest load flow; 

c. If this lowest load flow is smaller than a threshold p, then go to step d); otherwise stop 

searching for the similar hour and perform the risk assessment for this condition; 

d. Assume that the topology of the next hour does not have the branch found in b), then 

use the method described in point 1 above to identify the similar hour. 

The idea behind this step is that the presence or absence of very lightly loaded circuits 

has little effect on the risk assessment. I have used p=0.1 in my studies. 

Implementing this speed enhancement, the number of hours assessed can decrease 

dramatically. Increasing s and P can reduce the number of hours assessed to any desired 

value. In doing so, the similarity of the hours becomes more and more of a very crude 

approximation. However, for a given computational time constraint, accepting the crude 

approximation may be desirable. Even under highly approximate similarity conditions, 
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should doing so be necessary, the method still provides a systematic and rigorous way to 

identify condition probabilities. 

4.4 Quantification of maintenance benefits- Risk reduction calculation 

A table has been developed [73] matching maintenance tasks to the failure modes that 

they affect, based on literature review together with resources obtained from industry 

contacts, where a maintenance task is, with respect to a particular component (line, 

transformer, circuit breaker), a task that changes the state of the component. On the other 

hand, a monitoring activity such as inspection, testing or sampling is a task that provides 

information useful in assessing the component state. The change in component state resulting 

from a maintenance task should result in either failure probability reduction or extended life 

or both. 

The hazard function has been used to illustrate these benefits. A hazard function for a 

typical transmission equipment failure mode has been shown in Fig. 3.6. This curve can be 

divided into two periods: 1) almost constant hazard rate period and 2) deterioration period 

with increasing hazard rate. The level of each benefit from maintenance, with respect to a 

particular failure mode for a specific component, is associated with where on the hazard 

curve the component lies when the maintenance is performed. If the maintenance is 

performed during the deterioration period, e.g., at time tf in Fig. 3.6, the benefit comes 

mainly from the decrease of hazard rate, which results in a decrease in failure probability Ap, 

but for maintenance performed during the constant hazard rate period, e.g., at time td, the 

benefit comes mainly from the life extension At because of delay of the deterioration period 

(t(t in Fig. 3.6). 

Good estimates of Ap and At resulting from a maintenance task may be obtained by 

statistically characterizing the failure mode deterioration level before and after the 

maintenance using condition assessment tools in chapter 3. The effect of maintenance m on 

component k completed at time t is expressed through its risk reductions due to hazard rate 

reduction and life extension, as CRR(m, k, t) = CRR, (m, k,t) + ax CRR,2 (m, k,t) 

CRRi is the risk reduction from failure probability reduction, CRR2 is the risk reduction 

from life extension, and a is the corresponding weight chosen to reflect the user's relative 
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emphasis on long term component life extension versus near-term system reliability 

enhancement. 

4.4.1 Risk reduction due to hazard rate decrease 

The idea that maintenance results in risk reduction may be captured analytically by 

defining a particular maintenance task m completed at time t is known to decrease the 

probability of a contingency c by A,p(m, c, t). Here Ap is the maintenance induced hazard rate 

reduction. The cumulative-over-time risk reduction due to maintenance task m is ACR(m,tf), 

computed as a function of the completion time tf according to: 

ACR(m, f/ ) = ACR^ (m, f ̂  ) + ACR^ (m, '/ ) 

f t f  f 8 7 6 0  (4.24) 
= { ( W) - ^ 0R(O,f) -

where Td is the duration of the maintenance activity, R(0,t) is the risk variation over time with 

no maintenance, and R(m,t) is the risk variation over time with maintenance. The first 

integral in (4.24) is the risk reduction during the maintenance period, always non-positive 

indicating that risk may increase during the maintenance period. The second integral in 

(4.24) is the risk reduction after completion of the maintenance activity, always positive due 

to the decrease in failure probability. In each integral, R(0,t) is obtained from the long-term 

simulator. If, during the maintenance period, no component is outaged, then ACRdurmg^O. 

However, if the maintenance task requires removal of component k (a generator, line, 

transformer, circuit breaker), then ACRdUring<0 because of changes in operating conditions, 

e.g., voltages, flows, etc., which change the severity of all contingencies except contingency 

k (contingency k cannot occur due to the fact that the corresponding component is on 

maintenance outage). Therefore, the risk "reduction" during maintenance task m is: 

ACRd«ri„g(m> t/)= r W,0-R(m,t)Ylt = [YjP(c)sev(c10,0— J]p(c)se^cI*)¥* 
f d J c-q c=0,c*A 

t N 
= | [p(k)sev(k\0,t)+ V p(c)(sev(c | 0, £) - sev(c | m, t))]dt (4.25) 
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Now consider the second integral in (4.24), the risk reduction after the maintenance 

activity. Here, the maintenance activity m reduces contingency k probability by Ap(m,k) but 

does not affect the contingency k severity. We assume that maintenance activity m affects 

only contingency k probability and no others. The risk reduction after maintenance activity m 

is 

j-8760 ( 

'</ 
AO^(m, f/)= j*™{R(0, f) - a^(m, f)}<& 

= f {[p(k)sev(k | 0,0 + Yjp(c)sev(c | 0,/)] 

c*k 
N  

- [(p{k) - k))sev(k | 0, t) + p(c)sev{c | m, t)~§dt 
c=o 
c*k. 

where we have pulled from each summation the risk associated with contingency k, since 

contingency k is the only one having a probability affected by the maintenance activity. After 

tf, component k is back in service, and the operating conditions are unchanged relative to the 

case of no maintenance; therefore sev(c\0,t)=sev(c\m,t) Vc=l, ...,7V, and the two summations 

within the integral of (4.26) are equal so that: 

ACR after (m f) = J( {p{k)sev(k | 0,f) - (p(k)  - Ap(m,k))sev(k I 0 ,t)}dt 

L, , (427) 
= \Ap(m,k))sev(k \0,t)}dt 

Jtr 

Denoting the contingency k risk, without maintenance, as R(0,k,t), we have 

sev(k\ 0, t) =R (0, k, t)/p (k), so that 

A CR, r „ r ( m , t f )=  =  A p ( '" ' k )  f" R(0,k , t )d t  (4.28) 

Substituting (4.26) and (4.28) into (4.24), and replacingp(k)sev(k\0,t) in (4.25) by R(0,k,t), 

results in the following expression for the total risk reduction associated with maintenance 

activity m completed at time tf. 
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A CR(m,tf) 

= V [R(0,k,t) + V p(c){sev(c | 0, t) - sev(c | m, t))]dt + T R(0,k,t)dt^ ^ 
cX*k p(k) J'f 

There are three main terms in the risk reduction expression of equation (4.29). The first 

term inside the first integral represents the reduction in risk, relative to the basecase, because 

of maintenance outage of component k means that contingency k can no longer occur. The 

second term inside the first integral, the summation, represents the change in risk (usually a 

risk increase) from all remaining contingencies due to the change in operating conditions 

caused by the maintenance outage of component k. The third term, the second integral, 

represents the risk reduction after the maintenance period from the maintenance-induced 

probability reduction of contingency k. 

We see that in order to obtain the change in cumulative risk due to a maintenance activity, 

we need to evaluate the two integrals. The first integral requires p(c) for all contingencies 

c=0,N (which we assume to be available), the severity of all contingencies associated with 

the basecase configuration (0,t), and the severity of all contingencies occurring under the 

weakened configuration (m,t). The contingency severities associated with the basecase 

configuration come from one run of the simulator, but the contingency severities associated 

with configuration (m,t) would require rerunning the simulator for every weakened condition, 

i.e., for every maintenance activity m, and would be excessively computational. Thus we can 

evaluate the first integral using approximate methods. For example, one might evaluate the 

severities associated with configuration (m,t) under the assumption that severity is linear and 

thus the severity of removing two lines is the sum of the severity of removing each line alone. 

Alternatively, one might assume that maintenance task m, which requires removal of 

component k, causes no change in severity so that sev(c\0,t) =sev(c\m,t), and the summation 

in the first integral of (4.29) is 0. This might be true as a result of, for example, operator 

initiated system adjustments during the maintenance period. I accept this assumption in my 

work. Under this assumption, the total risk reduction associated with maintenance task m 

completed at time tf is 



www.manaraa.com

80 

r * a ( 0 , ( 4 . 3 0 )  
JtrT« p(k) Jlf 

Thus, we need R(0,k,t), the risk variation for each contingency affected by a maintenance 

task under the basecase network configuration, which is information obtained from a 

simulator run. In (4.30), the first term indicates the risk reduction accumulated during the 

maintenance period because contingency k cannot occur and in general will be quite small. If 

one assumes that maintenance outages cause no severity increase, then it is reasonable to also 

neglect the first term in (4.30), which is: 

ŒK, (m,f/ ) = 4(0, f)<& (4.31) 

where R(0,k,t) is the risk variation for each contingency under the system basecase 

configuration, information obtained from a simulator run (these contingencies include only 

those having probability affected by a maintenance task), Ap(m,k) is the failure probability 

reduction due to the maintenance task m, and p(k) is the failure probability of contingency k. 

4.4.2 Risk reduction due to life extension 

The risk reduction due to the life extension At, due to the delay of deterioration, is: 

Œ# % (m, ' ) = #C(&) x x (1 + r)-('+A'> (4.32) 

Here, CRR2 is the risk reduction due to the delay of the deterioration and RC(k) is the 

restoration (repair) cost of the component after the failure. Atk is the length extension, with 

respect to failure mode k, and MTTF is the component mean time to failure, r is the inflation 

rate. So the risk reduction due to delay of deterioration can be explained as the saving of 

extending the life of this component from deterioration. 

4.4.3 Risk variation caused by the maintenance 

While the maintenance requests the service to be removed out of service temporarily, it 

also may need some dispatch actions so that no security violation is made. Thus it will incur 

some cost associated with the dispatch, if necessary, and increase the risk at the time of the 

maintenance. The difference between this risk and the risk caused by the contingency is that 

this risk is incurred by the maintenance scheduling and its probability is 1 at the maintenance 

interval but 0 otherwise. I want to represent this effect of maintenance in the objective 
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fonction, which reflects the redispatch cost of scheduling a maintenance task at a certain time 

t. So the total objective function becomes 

Here C(m,k,t) is the increased risk due to dispatch cost needed to schedule outage of 

component k at time t. 

Generally, the value of increased risk due to maintenance scheduling should be non-

positive, and might has a high value at time t whenever there is a peak load, or some other 

forced outage. By adding this option the utilities to could be permitted to schedule 

maintenance even at critical time, with the cost that they are willing to pay. 

For most the components in transmission system they have all of three risk reduction in the 

(4.33). But for tap changer, since its failure usually does not cause outage immediately, there 

is no security risk associated with tap changer. Therefore its CRRi=0 and the benefit of 

maintenance is credited to the life extension, which means CRR2>0-

4.5 Optimization 

4.5.1 Objective function and constraints 

As indicated in Figure 4.3, first the simulator is run to compute risk as a function of time 

for each hour over a long-term such as a year and then, for the example of this paper, use (1) 

to compute risk reduction associated with each proposed maintenance task. This step results 

in triplets comprised of: {maintenance task, completion time, risk reduction}. These triplets 

serve as the input to the optimizer. 

Let N be the total number of maintainable transmission components; k=l,...,N be the 

index over the set of maintainable transmission components; Z* be the number of 

maintenance tasks for component k; m=l, ...Lkbe the index over the set of maintenance tasks 

for transmission component k\ and t=l,...Tbe the index over the time periods. 

Define Is(k,m,t)=1 if the mth maintenance task for component k begins at time t, and 0 

otherwise, Ia(k,m,t)=\ if the mth task for component k is ongoing at time t, and 0 otherwise. 

Define d(k,m) to be the duration of task m for component k, so that 

CRR(m,k,t) = CRRx(m,k,t) + CRR.2(m,k,t) - C(m,k,t) (4.33) 

(4.34) 
j=t-d{k,m)+1 
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Equation (4.34) indicates that determination of whether the m'h task for component k is 

active at time t is accomplished by searching the selection function over the duration of the 

task until t. Also, cost(k,m) is the cost of the mth task for component k, and CRR(k,m,t) is its 

cumulative risk reduction if the task begins at time t. Let Inf(k,m) be the set of periods for 

which task m for component k cannot be performed and are therefore infeasible. Each 

{component, task} combination (k,m) is tagged with a budget category B(k,m)=b. For 

example, bel, 2, 3, 4, where l-transformer maintenance, 2=tree-trimming, 3=insulator 

cleaning, and 4=circuit breaker maintenance. Crew(k,m) is the required number of crews for 

mth task for component k. TotCrew(b,t) is the number of labors available for maintenance 

category b at time t. Then the objective function and constraints become: 

N L„ T 

M a x { C R R  ( k , m , t )  x l s ( k , m , t )) (4.35) 
k = 1 m = 1 Z = 1 

subject to: 

4._L, 
'(k,m,t) < 1, k = 1,A ,N (4.36) 

m=1 t=1 

I a ( k , m , t )  =  0 , V  t  e I n f  ( k , m ) , \ /  (k , m ) (4.37) 

N Lm 

^ ^ Ia(k,m,t)* Crew(k,m) <TotCrew(b,t),\/t,b = 1,...4 (4.38) 

(k,m):B(k,m)~b 

N T 

^ ̂  ^jCOSt(k,m)*Is(k,m,t) <TotCos(b),b = 1,...,4 (4.39) 
k=1 m=1 t~ 1 

(k,m):B(k,m)=b 

YjII Ia(k,m,t)*SEV(k,m,t)<SEVmilx(t),\/t (4.40) 
4=1 m=1 

Is(k, m, t) G {0,1}, V (k, m, t) (4.41) 

In this optimization problem, the objective (4.35) is to maximize total cumulative risk 

reduction. Constraint (4.36) restricts each component to be maintained at most once. 

Constraint (4.37) enables user-specified infeasible periods for task (k, m). In our work, a DC-

flow program is used to detect maintenance outages causing overloads at time t and this task 

will be identified as infeasible at time t with constraint (4.37). Constraint (4.38) stipulates the 

number of maintenance tasks ongoing during any period is limited by crew constraints. 



www.manaraa.com

83 

Constraint (4.39) represents budget constraints for each budget category. Constraint (4.40) 

ensures maintenance outage from task (k,m) resulting in a security concern of SEV(k,m,t) 

with respect to low voltage and voltage instability, due to outage of component k at time t 

does not exceed the maximum allowable threshold for time t, which will be explained in 

detail in the next section. 

4.5.2 Security impact due to maintenance scheduling 

Many maintenance activities will require the maintained components to be removed out of 

service. Such planned outage may increase the stress of the system during the maintenance 

interval, even if some corresponding redispatch are scheduled together with the maintenance 

to reduce the stress. To account for the security concern here, I have defined the security 

function with respect to the low voltage and voltage instability problem. The definition and 

simulation techniques were introduced in the previous report [70] about maintenance 

scheduling for transmission system. The principle here is: for any time t, the summation of 

the severity of low voltage and voltage instability, due to the scheduled maintenance 

activities, should not exceed a preset threshold, SEVmax(t), the maximum allowable severity 

for time t is set so that no maintenance outage may violate the reliability criteria of low 

voltage or voltage instability, which is equation (4.40). 

It must be illustrated that this is a "soft" constraint, which means it cannot guarantee that 

the bus voltage at each node is within the acceptable range. However, it can provide a 

systematic constraint to forbid a maintenance or a combination of maintenance actitives to be 

scheduled at a critical time. Stricter constraint on feasible time for each maintenance activity 

should be implemented with the infeasible constraint (4.37). 

4.5.3 Relaxed linear programming with dynamic programming 

To solve this optimization problem is to determine Is(k,m,t), which then determines 

Ia(k,m,t). The optimization problem is integer, with multiple constraints and high dimension 

and therefore is challenging to solve. I have tested three different solution methods: heuristic, 

branch and bound, and relaxed linear programming with dynamic programming/heuristic 

(RLP-DPH). The first two of these are described in [58]. In comparing these methods, I 

found that RLP-DPH provides the best compromise between optimality and computational 

efficiency, resulting in near-optimal solutions with computation time reduced by an order of 
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magnitude. This approach first solves a relaxed linear program (RLP) to obtain Lagrange 

multipliers on budget (4.39) and risk (4.40) constraints, and then a new objective function is 

developed, comprised of the original objective together with weighted cost and weighted 

risk, where the weights are Lagrange multipliers obtained from the RLP. It then solves 

knapsack problems [74] over the labor constraints (4.38) one period at a time, where a period 

is taken to be one week. The procedure follows. 

A. Relaxed LP to get dual variables: Solve an RLP that includes all of the constraints (4.36)-

(4.41) in order to get approximations on budget and risk constraint Lagrange multipliers ///-

fi4 and Xt, t=J, ...7, respectively. This LP is "relaxed" in that variables are allowed to be non-

integer. The solution to the linear program is not a solution to the original integer 

programming problem since the decision variables are not integer. However, the solution 

does provide reasonable estimates of the Lagrange multipliers. These estimates are used to 

form a Lagrangian function comprised of the original objective less the weighted constraint 

functions, where the weights are the Lagrange multiplier estimates. The advantage of doing 

this is that the resulting problem is in the form of a "knapsack" problem, a class of problems 

for which solution procedures are readily available. The knapsack problem is solved over the 

labor constraints (4.38) for the first period (e.g., first week) to identify the maintenance tasks 

to be performed in that week. Then I re-solve the RLP with the week-1 variables known, to 

get updated Lagrange multipliers on the budget and risk constraints, and then a knapsack 

problem for the second period (e.g., second week) is solved. The process is repeated until all 

periods are solved. 

B. Solving knapsack problems: Moving risk and budget constraints to the objective function, 

the new objective function is a weighted sum of cumulative risk reduction, cost, and period 

risk, with the various Lagrange multipliers quantifying trade-offs between them. The 

problem of maximizing this objective subject to labor constraints (4.38) is a classical 

knapsack problem, stated as follows: 

max F ( I s ( k , m , t ) )  

N L „  4 N  L .  T  

=  ̂  A C R ( k , m , t ) x I s ( k , m , t ) j u b -  ^  ̂  ^  c o s t  ( k ,  m )  *  I s  ( k ,  m ,  t )  -  T o t C o s t  ( b )  •  
k  = 1 m = 1 b ~ I k  =  1 m  =  I t  =  1 

( k  , m ) : B ( k  , m )  =  b  
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AR(k,m,t)* Is(k,m,t)- Mmax(/) (4.42) 

subject to 

M M,„ 

Ia(m,n,t)*Crew(m,n) < Crew(b,t),\/t,b = 1,...,4 (4.43) 

(m,n):B(m,n)=b 

There is a knapsack problem for each period, and they are solved in chronological 

sequence. Some qualifying remarks follow, (a) The risk reduction is only for the given period 

t, so the first term of the objective function does not sum over the time intervals, (b) The 

Lagrange multipliers on the budget constraints are found for the yearly budget, so the second 

term of the objective function does sum over the time intervals, (c) There is a Lagrange 

multiplier on maximum risk for each period, but in solving for a single period, if we require 

that no task has duration exceeding a single period, we need only include the constraint 

corresponding to period t. However, some tasks may have durations exceeding one period 

(i.e., greater than 1 week). In this case, we must include the risk constraints for the current 

period t up to t+Tmax, where Tmax is the longest duration for any task. Therefore, the third 

term in the objective function must sum over period t to t+Tmax. (d) Available hours for any 

period must be reduced by ongoing tasks that begin in earlier periods, (e) Infeasible periods 

from constraint (4.37) are enforced using negative objective function coefficients. 

These knapsack problems may be solved to optimality using dynamic programming (DP), 

and this is reasonable for low-dimensional problems. For high-dimensional problems, DP is 

computationally expensive, so our solution algorithm allows for some percentage of the 

solution to be obtained heuristically using ratio scores (i.e. the ratio of each task's objective 

function contribution to its required number of labor hours) to fill some percentage of the 

knapsack. The remaining space is then filled with dynamic programming. The solution 

procedure for this problem is as follows: 

1. Choose a speed control percentage, SCP (0 is fast but suboptimal, 100 is slow but 

optimal). Set j=l. 

2. For period j, 

a. Rank all unselected and feasible tasks in order of their ratio score. Identify the first N-

ranked of these tasks, where N is chosen as a function of SCP (the larger is SCP, the 

larger is N). 
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b. Identify the remaining (100-SCP)% of the tasks using dynamic programming. 

c. Flag all identified tasks as "selected." 

d. If j=52, stop, else, j=j+l and go to (a). 

4.5.4 Discussion of optimality of the algorithm 

The RLP-DPH utilized the Lagrange multipliers from relaxed linear programming to set 

up the new objective function to solve the integer problem. This may bring some errors since 

the multipliers are only 'approximates' of multipliers in integer programming. Usually 

Lagrange relaxation method is used to search the Lagrange multipliers for the integer 

solutions but it is more complex and always the convergence is a concern. This section gives 

some discussion on the situation that algorithm will provide optimal solution and the 

comparison between our method and Lagrange relaxation. 

The major goal of optimization is to choose and find the best schedule of maintenance 

activities, to maximize the system reliability, with a bunch of constraints. The formulation of 

the problem is listed as (4.35)-(4.41) 

Where constraint (4.41) indicates that determination of whether the mth task for 

component k is active at time t is accomplished by searching the selection function over the 

duration of the task until t. This variable brings some difficulties in optimization because it is 

difficult to apply common solution procedure available to integer programming to model this 

constraint. To solve this problem and also reduce the calculation burden, I have coarsened the 

timeframe from hour to week. Since most maintenance task can be finished in one week, the 

decision variable in (4.41) can be dropped and simplify the algorithm discussion, the 

formulation above can be modified as: 

n lm t 

(4.44) 
k=1 m=1 /=! 

Subject to: 

EIX.., ̂ 1, & = 1,A (4.45) 

N Lm 

I Zz>„, <fle>,vt (4.46) 



www.manaraa.com

87 

n lm t 

(4.47) 
k=1 /»=1 t~\ 

(4.48) 
k=\ m=1 

xk,mj G {0,1}, v (k, m, t) (4.49) 

From above formulation we can see it is a mixed integer programming. It is a NP-hard 

problem, which means that no known algorithm solves it in polynomial time for all instances 

of the problem. It is similar with knapsack problem but more complex because of the 

multiple constraints. Branch and bound or dynamic programming has been used to solve the 

knapsack problem, but both of them have very bad worse-case complexities (exponential for 

branch and bound and pseudo-polynomial for dynamic programming). Therefore, it is 

unlikely that either of these methods can be used in practice [75]. 

To solve the integer programming, the effective way is to find the lowest upper bound 

or highest lower bound for the solution space, and find the best feasible solution in the space. 

So relaxation techniques are popular here. Most commonly used method is linear 

programming relaxation (LP) and Lagrange relaxation (LR). LP relieves the needs of 

variables and solves the optimization problem in real number space. The results might not be 

correct because of the relaxation. LR searches the best multipliers in the integer space and 

can find the exact optimal answer, but the searching in integer space brings a lot of problems 

of convergence. So combining the two methods may provide a way to overcome the 

shortcoming of both at the same time. What I did is to use linear programming relaxation 

with Lagrange multipliers. It can also be called as Lagrange relaxation without the integer 

constraint. To prove our results are same or similar with those from LR, I would like to 

discuss the solution of (4.44-4.49) in two cases: 

l,„ t 

Al) Change the constraint (4.45) as ^ ̂  xk m t =1, k - 1,A , N , which means all of 
n = l 7 = 1 

the maintenance tasks will be scheduled. So this is a problem of scheduling without the 

choice of maintenance activities. 

A2) Keep (4.45) as it was, which means not all of the maintenance tasks will be 

scheduled, as our problem. 
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Under the condition of Al), [75] has proved that the duality gap for LR and LP 

relaxations is exactly the same, or they provide the same upper bounds for the maximization 

problem. For our problem, we can convert the problem by relaxing the constraint (4.46)-

(4.48): 

LR1 min A = 1 m=l f=l t = \  

L M  T  

•^•Z2X»v = l
> 

yk and x
-̂' 

G 

(4.50) 

For given Lagrange multipliers, the solutions to the max part of LR1 is to set for each k 

all x k m , = 0 except for the variable corresponding to 

(m,t)k = argmax^A m, -atbk mt-fltck mt -%/^), which is set to one. And if we were to 

solve the LP relaxation of the max part in LR1, there should be N constraints in it. By linear 

programming we know that an optimal solution to a linear program is a basic feasible 

solution. The number of positive valued variables in a basic feasible solution is at most the 

number of constraints in LP. Hence there may be at most N positives xkml's for the problem 

under consideration. But at least one xk m t must be positive for each k in order to satisfy each 

constraint. And so an easy counting argument tells us that exactly N x k m t  will be 1 and the 

rest will be zero in the LP relaxed programming. Since this solution is integral, it means that 

integrality constraints in max part of LR1 could have been dropped without loss of 

optimality. After this, we can solve the LR1 (actually it becomes a linear relaxation problem 

with Lagrange multipliers without the integer constraint) with linear programming but get the 

same duality gap as Lagrange relaxation. 

However, under the condition of A2, the constraint (4.45) means there need not to be 

exactly most N positive m t. Hence the requirements of integer cannot be dropped without 

potential loss of optimality. However, the Lagrange multipliers reflect the benefit of 

objective function with respect to the violation of constraints, at the optimal point. Since all 

of our constraints and objective function are linear function and the variables are constrained 

in the range of [0,1]. The Lagrange multipliers from sub-gradient method should not be very 

far from the real value of the multipliers at the integer solution point. And by doing this, I 

convert the problem into the following formulation in LR2: 
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LR2: 

min 

Si G {0,1} 

MaxŒ Ê Œ r - - +!>,*(')+Ac+%,#(')]+: (4^1) 

It should be noted here that the complexity of an LR comes both from solving exactly the 

relaxed problem and searching for the best multipliers. In doing LR2, we need to search a 

much higher dimensional spaces (7V+ dimension of LRl). This complexity is not likely to be 

less than that of LRl without integer constraint, which in turn, guarantees a duality gap 

(error) no better than LP relaxation. 

So the conclusion here is: 

1) Lagrange relaxation is an exact solution method in integer programming. It searches 

the best multipliers in the integer space and can find the exact optimal answer, but the 

searching in integer space brings a lot of problems of convergence. 

2) For scheduling problem only, the linear programming relaxation provides good results, 

which is optimal since we can prove that it provides the same result as Lagrange 

relaxation while LR can provide exact solution to the optimization. 

3) For scheduling and selection problem, the linear programming provides the sub-

optimal solution, since the requirements of integer in (4.49) cannot be dropped. But we 

can say in confidence that the linear relaxation with Lagrange multipliers should not 

provide worse result as Lagrange relaxation with the same calculation burden, because 

the complexity of the linear programming is smaller and searching directions are much 

less. 

To show the performance of our program, I have tested the result with some other mixed 

linear program in commercial software and got satisfying results. The comparison will be 

illustrated in the following section. 

4.6 Incorporation of long-term and mid-term maintenance 

As introduced in section 4.1.3, the utility companies always need to make long term 

maintenance schedules, e.g. 10 years or longer for their transmission components. The 

objective is to make long term budget investment schedule for their asset management. The 

long-term maintenance and inspection policy is used to optimize maintenance costs, failure 

costs and extend equipment life for gradually deteriorating equipment. There is a large 



www.manaraa.com

90 

literature on it based on system age and lifetime failure statistics from a population, but 

significantly less on developing improved maintenance policies [76,77,78] when condition 

measurements are available. For example, the model of Figure 4.6 below, suggested in [35], 

embeds decision within a Markov process, to setup a quantity connection between 

maintenance and reliability. Then use Monte Carlo simulation to choose the optimal long-

term maintenance schedule for each component. 

Level 2 
(minor) 

Level 3 
(major) 

Level 1 
(new) 

Level 4 
(failed) 

mm3 ml mml m2 mm2 m3 

L4 L2 

L2 12 12 13 13 

Fig. 4.6: Simulation model for long-term maintenance planning 

The difference and relationship between long-term and mid-term maintenance are: 

1. For long term maintenance, more uncertainties exist in the component deterioration 

process, available resources and system improvement by maintenance, over a much 

longer period. 

2. The objective of long-term maintenance is to evaluate the optimal maintenance time 

for individual component, regardless the system operation condition at each specific 

moment. 

3. The output of long-term scheduling is the recommended maintenance/inspection 

interval for component maintenance. We can also call this task pre-selection for mid

term scheduling. Long-term maintenance scheduling determines the specific "time 
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window" for maintenance scheduling, and mid-term maintenance determines proper 

maintenance time within that window. 

My work here is to investigate the long-term maintenance method so that it can 

incorporate with the mid-term maintenance method described above. The objective function 

of long-term maintenance is for each maintenance activity, corresponding to each component 

k and failure mode m, to minimize the average cost of keeping the component in desired 

working condition: 

where C„ is the yearly operation cost of maintaining the components in working condition; T 

is the total time scale we consider the long term maintenance. And Tm is the maintenance 

cycle (1A,). It can be a value or vector of maintenance intervals for different maintenance 

activities. c.m is the cost per maintenance and c, is the cost of corrective system actions due 

to the maintenance, which is usually the redispatch cost of the scheduled outage. cf is the 

cost of repair after failure. MTTF is the mean time to failure of the component, with the 

maintenance cycle Tm. It can be evaluated with the Markov model in [79]. It is obvious that 

when Tm is small or the maintenance is performed frequently, the first part of (4.52) is very 

large because it is corresponding to the cost of maintenance, while the second part of (4.52) 

is very small because the probability of failure will be very low, and vise versa. So the 

objective here is to find the optimal Tm which minimize the total cost of keeping the 

components "healthy" in the life time. 

It is possible to evaluate these costs by simulation, but in the long-term maintenance, it is 

not easy due to the high uncertainties in system working conditions over a long time frame. 

A good assumption is that these costs are related to the duration of maintenance and the 

average severity it caused by the maintenance activity: 

— C + — Cd + Cf 
T  T  T  

Ca =Min ( 
T 

)=y-(C„+C,) + cf (4.52) 

C d  =  a * T d *  S e v ( k ,  m )  Cf - Sev(k, m) (4.53) 
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here, Td is the duration of maintenance, Tf is the repair time and Sev(k,m) is the average 

severity caused by the maintenance (if outage is needed) m for component k. This average 

severity does not depend on time because it is an average of severity function during one 

year, which is available in our risk simulation in 4.3: 

8760 

^Sev(k,m,t) 

Sev(k, m) = (4.54) 
8760 

Fig 4.7 gives the total structure of the incorporation between long-term and mid-term 

maintenance activities. The contents in each rectangle are: 1) statistical process for hazard 

rate estimation based on condition data; 2) Long-term maintenance scheduling. 3), 4) and 5) 

are mid-term maintenance selector and scheduler and they are sequential simulator, risk 

assessment and optimizer respectively. These parts comprise the whole structure of the asset 

maintenance management of electrical transmission system. 
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Fig. 4.7: Integration of data process, long-term maintenance and mid-term maintenance 
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4.7 Results 

I have illustrated my procedure, using a model of an actual utility system but with 

hypothetical maintenance activities. The system has 36 generators, 566 buses, 561 

transmission lines and 115 transformers. The power flow model also includes switchable 

shunt capacitors and reactors to ensure an appropriate voltage profile as loading changed. In 

addition, the data characterizing 1-year projected hour-by-hour operating conditions was 

obtained. This data included the following: 

• Total system load projection, 

• Expected tie-line flows, 

• Generation unit maintenance schedules which, together with the total load and tie-line 

projection, enable computation of the unit commitment, 

The total system load projection and expected tie-line flows were obtained by scaling the 

corresponding data from the previous year. This data was extracted from history files stored 

by the Energy Management System (EMS). 

The hour-by-hour 1-year loading trajectory, obtained from the EMS-history file and shown 

in Fig. 4.8, was used as the next year's expected loading trajectory. 
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Fig. 4.8: One year loading trajectory of testing system 

The time t=0 corresponds to October 1. The yearly peak load is 3077 MW occurring at the 
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end of July. The minimum load is 955 MW occurring at the end of September. 

4.7.1 Description of contingencies and maintenance activities 

Contingency analysis must be done for any component that I am considering to maintain. 

Thus, I do not consider contingencies involving generator outages, assuming that scheduling 

for generator unit maintenance is done a-priori and serves as an input to our procedure as 

indicated in the previous section. (The maintenance scheduling method applied here could, in 

principle, be applied to generator units as well, or, to both generator units and transmission 

components simultaneously. However, generator maintenance, or, power plant maintenance, 

is a much more complicated subject because of the large number of failure modes and 

corresponding maintenance activities). Therefore, the contingency list includes only branch 

outages (lines and transformers). In addition, I have limited the contingency list to lines and 

transformers that have potential to result in system security violations during the year, 

assumed for purposes of our study to include lines or transformers interconnected at 69 kV or 

above. 

The previously stated assumption does not imply that equipment at lower voltage levels 

(e.g., sub-transmission and distribution equipment) should not be maintained but rather that 

the failure consequence for equipment at lower voltages is different than the failure 

consequence for equipment at higher voltages. Whereas we measure failure consequence of 

high voltage equipment in terms of redispatch cost, we measure failure consequence of lower 

voltage equipment in terms of repair cost and load interruption. Given this change, the 

approach proposed in this thesis would also apply to the selection and scheduling of 

distribution equipment maintenance tasks as well. 

For transmission lines, tree contact and insulator failure are the two most common failure 

modes. For transformers, mechanical failure and insulation oil deterioration are the two most 

common failure modes. For circuit breakers, the failure of operation put the system under 

very high threat of instability and component damages. I limit the maintenance tasks 

scheduled in our illustration to those affecting these four failure modes. This means that there 

are 170 contingencies to assess; 89 line outages, 46 transformer outages and 35 circuit 

breaker failures. The failure modes and corresponding maintenance activities are listed in 

Table 4.3. 
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4.7.2 Hazard rate determination and effect of maintenance 

With the method I introduced in Chapter 4, we can estimate the hazard rate of components 

in transmission system, based on condition monitoring data and statistical analysis. For 

failure modes that we are lack of data or the condition monitoring is unavailable, we can use 

typical failure-rate data based on certain assumptions for the equipment in our system. 

Individual companies may be able to provide equipment-specific hazard rates which, if 

available, could be used in place of the typical data described below. 

1) Transformers: 

a. Failure modes of oil deterioration 

For failure modes of oil deterioration, we can use the method in chapter 4 to estimate the 

hazard rate and hazard rate reduction, based on the condition monitoring data. For example, 

based on the sample transformer result in chapter 4, and I assume that the transformer is in 

the 377 weeks after its previous maintenance (oil filtering). With the Markov model and the 

parameter we get form the simulation, we can calculate the hazard rate of this transformer 

during the whole year, with the failure mode of oil deterioration with equation (3.41). And 

the change of hazard rate will be: 

= (4-55) 

as depicted in Fig 3.6. For the maintenance of oil refinement (oil filtering and oil replacement) 

in the example of section 3.4.1.1, the records after maintenance always shows that the oil is 

in very good condition, we can assume that the maintenance renew the oil and the hazard rate 

returns to 0. Thus we can calculate zip, the change of failure probability after maintenance, as 

& P  =  P ( t f ) -

b. Failure modes of core problem, mechanical failure and general ageing: 

Reference [79] provides a typical MTTF for power transformers of 25 years. We assume 

in the work described in this chapter that: 

1. No transformer is allowed to have two maintenances in the same assessment interval. 

2. Wear out for a transformer begins at 10 years. 

3. All transformers have ages between 11 and 16 years. 

4. Maintenance effects are as follows: 
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* Minor maintenance of a transformer reduces the hazard rate to the value of the 

previous year. 

Major maintenance of a transformer reduces the hazard rate to the value of the 10th 

year. 

5. The Weibull distribution is used to model this wear-out process where the Weibull 

parameters are a=7E-7 and [3=5.097. The resulting hazard function is shown in Fig. 4.9. 
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Fig. 4.9: Hazard rate assumed for transformers core problems 

2) Transmission lines 

Typical transmission line hazard rate data is 1 outage/100km/year for 345kV and 161 kV 

lines [80]. 

From [81], the typical hazard rate of tree contact is />=0.05 outages/1 OOmiles/year or 

0.03125 outages/100km/year. It was assumed that after tree trimming, the hazard rate drops 

to zero so that the maintenance induced probability reduction is Ap=p. The hazard rate of 

tree contact also changes during the year and can be expected to increase linearly, since 

according to the high voltage test (U50), the disruptive voltage with 50% of discharge 

probability increases linearly with decreasing distance if the distance is less than 2 meters. 

Otherwise it is nearly constant. I make the assumption that all tree-contact-related hazard 

rates are 1 outage/100km/year at the beginning of year, and if the tree trimming is not 

scheduled, the hazard rate increases linearly to 1.03125 occ/100km/year. Within the time 

frame, the hazard rate will be determined by the linear function. 

Transmission line device failure is also related to the line length and voltage level. For 
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161KV, the typical hazard rate is set to be p=0.26 occurrences/1 OOmiles/year. For 345KV, the 

typical hazard rate is set to be p=0.20 occurrences/1 OOmiles/year. 

3) Circuit Breaker 

One major failure mode of circuit breaker is it fails to operate when a fault occurs in its 

protection region. So this is a higher order contingency and its hazard rate should be achieved 

with the information of system configuration and topology data, together with probability 

analysis. Suppose for a circuit breaker with hazard rate Pc, there are N components within its 

protection region and each with hazard rate P, . And failure of each component requires the 

operation of trip of circuit breaker. It was assumed that the failures of all components are 

independent. So the rate of failure of this two order contingency is: 

The hazard rate of circuit breaker can be achieved from failure reports and test. Typical 

hazard rate data for circuit breaker is 0.009-0.015 faults/year, depending on the voltage levels 

of the circuit breaker [82] [83]. 

4.7.3 Maintenance activities 

Five categories of maintenance are considered. I desire to identify the maintenance tasks 

and their schedule that results in the largest risk decrease for the specified contingencies. I 

considered performing tree-trimming for every line, insulator cleaning for every line, minor 

and major maintenance for every transformer and maintenance of circuit breaker, where each 

task may be done at any time of the year. Possible tasks and their attributes, together with the 

corresponding contingencies are listed in Appendix 2. 

In Appendix 2, type indicates the category of maintenance tasks (1-Tree trimming; 2-

Transmission line insulator maintenance; 3-Transformer minor maintenance; 4-Transformer 

major maintenance; 5-Circuit breaker maintenance). Hour is the total labor hours required for 

the maintenance task. Cost is and Duration are the budget and time interval required to 

perform the maintenance task. For each maintenance, Hour=Crew* Duration, where "Crew" 

is the number of persons in the crew required to perform the task. The column of contingency 

gives the bus numbers terminating the line or transformer identified for the contingency. 

N 

(4.56) 
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4.7.4 Description of results 

Using the previously described system data, the process of risk-based transmission 

component maintenance scheduling is illustrated. For the contingencies identified in Table 

4.4 I performed risk assessment over one year. The composite risk variation through the year 

(the sum of risk over all contingencies) is shown in Fig. 4.10. 
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Fig. 4.10: Composite system risk 

This Fig. 4.10 provides a global sense of how the system risk varies through the year. 

However, optimization of the maintenance is based entirely on contingency-specific risk 

variation. I have listed contingency-specific risk variation in table 4.4 and identified the 

highest risk contingencies for the specified problem-type at three different load levels (peak, 

minimum, and average). Fig 4.11 and 4.12 are the yearly risk curves for the two 

contingencies, 66 and 21, which have the highest risk and 10th highest risk at peak load. 
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TABLE 4.4: HIGHEST-RISK CONTINGENCIES FOR OVERLOAD RISK AT DIFFERENT LOAD LEVELS 

System peak load, P=3073MW, hour=5993 

Order Contingency ID Risk Category 
1 66 188.70 161KV Transmission tree contact 
2 174 184.78 161KV Transmission line failure 
3 41 184.76 161KV Transmission tree contact 
4 149 170.99 69KV Transmission line failure 
5 257 151.49 69 KV Circuit breaker failure 
6 140 151.17 161KV Transmission line failure 
7 248 145.35 69KV Circuit breaker failure 
8 32 137.77 69KV Transmission tree contact 
9 129 137.49 69KV Transmission line failure 
10 21 123.18 69KV Transmission tree contact 

System minimum load, P=987MW, hour=4445 

Order Contingency Risk Category 
1 66 56.06 161KV Transmission tree contact 
2 174 54.90 161KV Transmission line failure 
3 149 50.80 69KV Transmission line failure 
4 41 50.79 161KV Transmission tree contact 
5 257 45.00 69 KV Circuit breaker failure 
6 140 44.91 161KV Transmission line failure 
7 32 43.18 69KV Transmission tree contact 
8 248 40.94 69KV Circuit breaker failure 
9 129 40.85 69KV Transmission line failure 
10 237 36.60 69KV Circuit breaker failure 

System average load, P=1693MW, hour=33 

Order Contingency Risk Category 
1 66 98.42 161KV Transmission tree contact 
2 174 96.38 161KV Transmission line failure 
3 149 89.18 69KV Transmission line failure 
4 41 89.16 161KV Transmission tree contact 
5 257 79.00 69 KV Circuit breaker failure 
6 140 78.85 161KV Transmission line failure 
7 32 75.81 69KV Transmission tree contact 
8 248 71.86 69KV Circuit breaker failure 
9 129 71.71 69KV Transmission line failure 
10 21 64.24 69KV Transmission tree contact 
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Fig. 4.11: Yearly risks of contingency 66 Fig. 4.12: Yearly risks of contingency 21 

4.7.5 Risk reduction with maintenance 

Based on cumulative risk assessment, risk reduction curves CRR(k,m,t) for 

component k, task m, completed at time t, based on eq. (4.33) are computed for each 

maintenance task. Figures 4.13 and 4.14 show the risk reduction curves for maintenance 

Trim66 and Trim21 (one such curve exists for each component k, task m combination). 

We can see it is non-increasing, indicating that the earlier the maintenance is scheduled, 

the larger will be the risk reduction. However, not all the maintenance start times 

indicated in Figures 4.13 and 4.14 are feasible because some of them incur very high risk 

due to maintenance-outage. This constraint is represented in the optimization model. 
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Fig. 4.13: Risk reduction of contingency 66 
Fig. 4.14: Risk reduction of contingency 21 
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From Fig 4.13 and Fig 4.14 we can see that at the end of the year, the cumulative risk 

reduction falls below zero. This is because in (4.33), there is a non-positive item which is 

due to redispatch cost of aintenance itself. Since at the end of the year the cumulative risk 

reduction is very small, and the redispatch cost of maintenance itself might cause the 

benefit of maintenance lower than the risk increase by itself. 

4.7.6 Maintenance task pre selection 

The task pre-selection is needed before we set up our mid-term maintenance 

scheduling problem, to reduce the calculation burden. As introduced in 4., a long term 

maintenance selection was performed based on components repair cost and failure cost 

estimated with (4.52) and (4.53). Fig 4.15 describes the relationship between the yearly 

average cost of maintaining the component in working condition and the maintenance 

cycle of oil filtering of transformer. 
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Fig 4.15: Yearly operation cost vs. maintenance interval of oil filtering 

From Fig 4.15 we can see that there is an optimal maintenance interval with respect to 

the yearly average operation cost of the transformer. The optimal value in the figure is 

2.11 years. That does not give a fixed time of maintaining the transformer but rather 

suggests a good time frame to perform the maintenance or inspection. In Fig. 4.15, the 
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value should be between 1.5 to 3 years and the average cost will be between 7.3k and 

8.1k dollars. Table 4.5 gives the selected transformer minor maintenance tasks and their 

corresponding optimal maintenance intervals. 

TABLE 4.5 SELECTED TRANSFORMER MINOR MAINTENANCE TASKS AND OPTIMAL 

MAINTENANCE INTERVALS 

Task Cm($) Cd($) Cf(k$) Tm (year) 
Xrmil 1000 2980 93.8 2.11 
Xrmi2 1000 2350 74.0 1.93 
Xrmi3 1000 2686 84.6 1.89 
Xrmi4 1000 3590 113.1 1.82 
Xrmi5 1000 1970 62.1 1.99 
Xrmi6 1000 3025 95.3 1.86 
Xrmi7 1000 3687 116.1 1.81 
XrmiB 1000 4890 154.0 1.76 
Xrmi9 1000 5600 176.4 1.74 

XrmilO 1000 2080 65.5 1.97 
Xrmil 1 1000 3500 110.3 1.82 
Xrmil2 1000 4235 133.4 1.78 
Xnml3 1000 2598 81.8 1.90 
Xrmil4 1000 2600 81.9 1.90 
Xrmil 5 1000 2350 74.0 1.93 
Xrmil 6 1000 1970 62.1 1.99 
Xrmil? 1000 3025 95.3 1.86 
Xrmil 8 1000 5625 177.2 1.74 
Xrmil9 1000 2689 84.7 1.89 
Xrmi20 1000 3698 116.5 1.81 
Xrmi21 1000 4503 141.8 1.77 
Xrmi22 1000 2680 84.4 1.89 
Xrmi23 1000 2908 91.6 1.87 
Xrmi24 1000 3758 118.4 1.81 
Xrmi25 1000 3622 114.1 1.81 
Xrmi26 1000 4020 126.6 1.79 

4.7.7 Maximum risk reduction with budget and labor constraints 

The labor and budget constraints are summarized in Table 4.6. These constraints, 

combined with the risk-reduction curves for each contingency and corresponding 

maintenance task, constitute the input to our optimization problem. The column titled 

"Total Cost" indicates the cost of all desired maintenance tasks under each of the four 

categories if they were performed. Comparison of "total cost" to the budget constraint for 

each category indicates there are more tasks than the budget will allow. 

As described in section 4.5.3, this problem is solved using a novel relaxed linear 



www.manaraa.com

103 

programming/dynamic programming algorithm. Although we use only five maintenance 

types in this illustration, it is easy to use our algorithm for any number of maintenance 

types. 

TABLE 4.6: CONSTRAINTS FOR MAINTENANCE SCHEDULING 

Maintenance Maintenance description Labor constraint Budget Total 
type (labor hour of 

employees) 
constraint ($) Cost ($) 

1 Tree Trimming 400 80000 121000 
2 Transmission line maintenance 480 125000 235640 
3 Transformer minor maintenance 320 32000 59294 
4 Transformer major maintenance 480 150000 154320 
5 Circuit breaker maintenance 400 100000 117942 

The maintenance task selection and schedule computed by the optimization program 

is shown in Table 4.7, where the schedule is given by weekly periods. Because the total 

budget is less than the cost needed to perform all of the desired maintenance tasks, there 

are some maintenance tasks left unscheduled based on their lower level or risk reduction. 

The total cumulative risk reduction over the year is 598.97k$. This means that the above 

maintenance schedule can be expected (on average if this scenario was experienced many 

times) to result in a decrease of 598.97k$ of operation cost over the next year. 

TABLE 4.7: TRANSMISSION MAINTENANCE SCHEDULE 

Periods Tree trimming Transmission line XFMR minor XFMR major Circuit 
maintenance maintenance maintenance breaker 

maintenance 
1 Trim32 Trim68 Trans32 Transôl Trans68 Xrmi2 Xrmjl2 CB11 
2 Trim32 Trim68 Trans32 Transôl Trans68 Xrmi2 Xrmil 2 CB11 
3 Trim2 Trim6 Trim58 Trans32 Trans39 Trans68 Xrmi2 Xrmjl2 CB8 
4 Triml Trim6 Transi Transô Trans39 Xrmi4 Xrmjlô CB8 
5 Trim6 Trim45 Trim54 Transi Transô Trans52 Xrmi4 Xrmjlô CB31 
6 Triml2 Trim30 Trim63 Trans2 Transô Trans52 

Trans58 
Xrmi4 Xrmjlô CB31 

7 Trim 12 Trim37 Transô Trans89 Xrmil 1 Xrmj8 CB14 

8 Triml2 Trimôl Trans 12 Trans89 Xrmil 1 Xrmi 8 CB14 
9 Trim20 Trim35 Trans 12 Trans89 Xrmil 1 Xrmi 8 CB12 
10 Trim20 Trim35 Trans 12 Trans40 XrmilO XrmjB CB12 
11 Trim27 Trim40 Trans 12 Trans40 XrmilO Xrmj 13 CB13 
12 Trim27 Trim40 Trans35 Trans40 XrmilO XrmjB CB13 
13 Trim33 Trim67 Trim70 Trans35 TransôO Xrmi 15 Xrmj 11 CB35 
14 Trim67 Trim89 Trans35 TransôO Xrmil 5 Xrmj 11 CB35 
15 Trim52 Trim67 Trans41 TransôO Xrmi 15 Xrmj 11 CB2 

16 Trim28 TrimôO Trans41 Trans45 Trans83 Xrmi 16 Xrmj 15 CB2 
17 Trim28 TrimôO Trans30 Trans41 Trans83 Xrmi 16 Xrmj 15 CB7 
18 Trim41 Trim79 Transô? Trans83 Xrmi 16 Xrmj 15 CB7 
19 Trim41 Trim79 Trans37 Trans42 Transô? Xrmi? Xrmj 17 CB34 
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20 Trim4 Trim59 Trans37 Trans42 Trans67 Xrmi 7 Xrmj 17 CB34 

21 Trim4 Trim59 Trans20 Trans70 Trans67 Xrmi7 Xrmj 17 CB9 

22 Trim39 Trim42 Trim62 
Trim65 Trim72 

Trans4 Trans20 Trans31 Xrmi23 Xrmj 7 CB9 

23 Trim 15 Trim31 Trim51 
Trim84 Trim85 

Trans4 Trams20 Trans31 Xrmi23 Xrmj 7 CB25 

24 Trim44 Trim64 TrimS0 
Trim83 

Trans4 Trans27 Trans28 Xrmi23 Xrmj 7 CB25 

25 Trim56 Trim80 Trans27 Trans28 Trans62 
Trans79 

Xrmi24 Xrmj 10 CB32 

26 Trim47 Trim56 Trim69 TransS 1 Trans54 Trans62 
Trans79 Trans86 

Xrmi24 Xrmj 10 CB32 

27 TrimS Trim46 Trim50 TransS 1 Trans59 Trans63 
Trans86 

Xrmi24 Xrmj 10 CB22 

28 TrimS Trim 14 Trim38 Trans44 Trans47 TransS9 
Trans65 Trans69 

Xrmi 13 1 Xrmj 5 CB22 

29 Trim 38 Trim86 Trim87 Trans 14 Trans 15 Trans47 
Trans59 Trans87 

Xrmi 13 XrmjS CB15 

30 Trim73 Trim75 Transi6 Trans46 Trans64 
Trans84 Trans87 

Xrmi 13 Xrmj 5 CB15 

31 Trim73 Trim75 Trans 16 Trans33 Trans46 
TransSO Trans88 

Xrmi6 Xrmj20 CB1 

32 Trim9 Triml0 TrimS8 TransS0 Trans56 Trans73 
TransSS 

Xrmi6 Xrmj20 CB1 

33 Trim9 Triml 0 Trim48 TransS 6 Xrmi 6 Xrmj 20 CB6 
34 Trim34 Trim49 TransS6 Xrmi21 Xrmj 14 CB6 

35 Trim 13 Trim49 Xrmi 21 Xrmj 14 CB29 

36 Trim57 Xrmi21 Xrmj 14 CB29 
37 Trim57 Xrmi26 Xrmj4 CB3 
38 Xrmi26 Xrmj4 CB3 
39 Xrmi26 Xrmj4 CB20 
40 Xrmi9 Xrmj6 CB20 
41 Xrmi9 Xrmj6 CB28 

42 Xrmi9 Xrmj6 CB28 
43 Xrmj 3 CB27 

44 Xrmj3 CB27 
45 Xrmj3 CB19 

46 Xrmj 18 CB19 
47 Xrmj 18 

48 Xrmj 18 
49 

50 
51 
52 

# scheduled 62 51 14 16 23 

Total cost 75800 126120 31288 96320 79602 

Table 4.7 indicates that maintenance tasks are scheduled early in the year, insofar as 

crew and risk constraints allow, so as to reduce the risk of the most risky components as 

soon as possible. This will reduce those risks for the remainder of the year, which in turn 

tends to maximize the risk reduction achieved, in conformance with the objective. 

From the results we can see the effect of resource constraints on maintenance 

scheduling. For tree trimming, transmission line maintenance and transformer minor 
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maintenance, the dominating constraint is budget. Almost all of the budgets in those 

categories were consumed before the end of the year, thus leaving some blank periods 

although they have crews available. For transformer major maintenance and circuit 

breaker maintenance, the dominating constraint should be the labor constraint, so not all 

maintenance can be scheduled during the period of year although they have enough funds 

available. There are a few weeks at the end that no maintenance is scheduled, this is 

because at end of the year a task would probably incur a cost without a risk-reduction in 

the budget year, as indicated in Fig 4.13 and 4.14. So we can set that different constraints 

might have different effect on maintenance selection and scheduling, so their effects on 

optimization results should be analyzed. 

4.7.8 Optimality of our program 

To show the performance of our program, I have tested the result and compare those 

from other mixed linear program in commercial software. Since the size of our problem, 

the program should have ability to deal with large size integer programming. Two 

programs are tried. The first one is the bintprogQ, a function in optimization toolbox of 

Matlab 7.0. It is based on branch and bound method, and could solve binary variable 

problem. However, it does not have good ability to deal with large size problem. When 

the projects size exceeds 5 (number of variables exceeds 5*52=206), the searching cannot 

be finished within limited time. 

Another software to compare is CPLEX. CPLEX provides large-scale mathematical 

programming software and services for resource optimization. It has linear, mixed-integer 

and quadratic programming solvers and is known for superior performance and 

reliability—particularly on large, difficult problem. From the introduction in its manual, 

the solver is based on branch and bound method. In this method, a series of LP sub-

problems is solved and a tree of sub-problems is built; each sub-problem is node of the 

tree. The root node is the LP relaxation of the original MIP problem. The sub-problems 

can result in an all-integer solution, an infeasible problem or another fractional solution. 

If the solution is fractional, the process is repeated. This tool is powerful in solving 

industry-sized problem, but might encounter some performance problem such as out of 

memory for real large problem. And due to the facts of the mechanism, users can neither 
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project how much further the process needed to go nor how much memory would be 

required to ultimately solve it. 

I have tested the performance of both programs on different cases of our problem. 

Those cases have different resource allocation as in Table 4.8. The comparison of results 

from our program and CPLEX is listed in Table 4.9. In every case the CPLEX can give 

very good result. The errors are within 1%. The conclusion of CPLEX results and 

comparison of two results are as follows: 

1) CPLEX can provide optimal result since it uses B&B method, but it is time and 

memory consuming because of the large size of tree it needs to build and search. In many 

cases optimal result are not reached before the memory is consumed. But CPLEX 

provides both best feasible solution and upper/lower limit for integer programming. 

Usually the gap (difference between the current best feasible solution and upper limit is 

less than 1%). And we can think this result is satisfying and can be deemed as optimal. 

2) CPLEX uses much more time in searching since it uses B&B method, which is a 

partial enumeration method. Usually it will cost more than 6 hours until the memory is 

exhausted. Since our sample problem is still small compare to industry size problem. The 

feasibility of using CPLEX in real system maintenance selection and scheduling needs to 

be investigated. 

3) Comparing to the optimal solution of CPLEX, our method of RLP-DPH can also 

provide good results. The error of the result with CPLEX solution always falls within 5%. 

And most of the error with the upper limit from CPLEX is less than 5% too. The 

advantage is the calculation time is much shorter and memory usage is much less. 

Although current computer technology can provide good support for heavy calculation 

burden, the searching size will increase exponentially with the increase of problem size, 

with the usage of B&B. So the computation burden is still a concern. But our method can 

solve this problem efficiently, because it divides the problem into smaller knapsacks and 

the calculation burden should increase linearly with the increase of problem size. Thus it 

provides very good speed performance with satisfying accuracy, as shown in Table 4.9. 
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TABLE 4.8: CASES WITH DIFFERENT RESOURCE ALLOCATION 

Case Maintenance category 

1. Tree 2. Trans. Line 3. Transformer 4. Transformer 5. Circuit Breaker 
trimming maintainence minor maint. major maint. maintenance 
Budget Crew Budget Crew Budget Crew Budget Crew Budget Crew 

A 80000 400 125000 480 32000 320 150000 480 100000 400 
B 225000 640 75000 320 75000 240 75000 480 75000 320 
C 75000 320 225000 640 75000 240 75000 480 75000 320 
D 75000 320 75000 320 225000 560 75000 480 75000 320 
E 75000 320 75000 320 75000 240 225000 800 75000 320 
F 75000 320 75000 320 75000 240 75000 480 225000 640 

TABLE 4.9: COMPARISON OF RESULTS BETWEEN RLP-DPH AND CPLEX 

RLP-DPH CPLEX 
Case CRR(k$) Time (sec) CRR(k$) Time (sec) Upper-

Limit (k$) 
Gap Error* Gap* 

A 598.97 134 623.35 35687 625.28 0.31% 3.91% 4.20% 
B 593.50 132 610.72 31568 616.16 0.89% 2.82% 3.67% 
C 599.77 144 626.34 35698 628.78 0.39% 4.24% 4.61% 
D 580.73 152 601.84 34658 607.44 0.93% 3.51% 4.39% 
E 576.99 150 598.87 38759 603.30 0.74% 3.65% 4.35% 
F 590.28 148 613.69 36764 614.63 0.15% 3.82% 3.96% 

Error*: The difference between solutions of RLP-DPH and CPLEX. 

Gap*: The difference between solution of RLP-DPH and the upper-limit from CPLEX, actually it is the 

upper-limit of error of our solution with optimal result. 

4.7.9 Optimization results with different resource allocations 

In this section, the purpose is to study the cumulative risk reduction achievable from 

various allocations of financial resources among the maintenance categories assuming 

that the total financial resources are limited. This exercise illustrates how one might 

identify the most effective allocation of resources among the various defined maintenance 

categories. 

Since we have five categories of maintenance activities, suppose we have four 

proposed budget and labor allocations (case B to F) as listed in Table 4.8. In each case, 

we emphasize one type of maintenance and assign two more times of the budget than the 

other category and about 1/3 of the total labor hours to it. The total financial resource is 

$525,000 and there are altogether 200000 labor hours (about 100 crews). The results are 

shown in figure 4.16-4.20. 
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Quarterly allocated CRR and resource allocation for different 
maintenance categories -Case B 

Quarter 1 
Quarter 2 Quarter 3 

Quarter 4 
Fiscal Year 

Trans Line 

Xfmr Minor 

Xfmr Major 

Tree Trimming 

CB Maint. 

CRR (k$) 
Cost (k$) 

Labor (100Hrs) 

Fig 4.16 Quarterly allocated CRR and resource allocation for case B 

Quarterly allocated CRR and resource allocation for different 
maintenance categories -Case C 

Quarter 1 
Quarter 2 

Quarter 3 

Tree Trimming 

Trans Line 

Xfmr Minor 

Xfmr Major 

CB Maint. 

CRR (k$) 

Cost (k$) 
Quarter4 Fiscal Year Labor (100Hrs) 

Fig 4.17 Quarterly allocated CRR and resource allocation for case C 
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Quarterly allocated CRR and resource allocation for different 
maintenance categories -Case D 

Quarter 1 

Quarter 2 

Quarter 3 

Tree Trimming 

Trans Line 

Xfmr Minor 

Xfmr Major 

CB Maint. 

Quarter 4 
Fiscal Year 

CRR (k$) 
Cost (k$) 

Labor (100Hrs) 

Fig 4.18 Quarterly allocated CRR and resource allocation for case D 

Quarterly allocated CRR and resource allocation for different 
maintenance categories -Case E 

Quarter 1 
Quarter 2 

Tree Trimming 

Trans Line 

Xfmr Minor 

Xfmr Major 

CB Maint. 

Quarter 3 
Quarter 4 

Fiscal Year 

CRR (k$) 
Cost (k$) 

Labor (100Hrs) 

Fig 4.19 Quarterly allocated CRR and resource allocation for case E 
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Quarterly allocated CRR and resource allocation for different 
maintenance categories -Case F 

Quarter 1 
Quarter 2 

Quarter 3 

Tree Trimming 

Trans Line 

Xfmr Minor 

| || Xfmr Major 

CB Maint. 

Quarter 4 Fiscal Year 

CRR (k$) 

Cost (k$) 

' Labor (100Hrs) 

Fig 4.20 Quarterly allocated CRR and resource allocation for case F 

Table 4.10 lists the quarterly performance (CRR, CRR/labor and CRR/cost) of general 

maintenance scheduling for each allocation case and yearly performance for each 

category. CRR/labor is in unit of $/Hour and it represents the labor efficiency in 

achieving the benefit of maintenance. CRR/cost is the benefit/cost ratio and it represents 

the economic efficiency of the maintenance scheduling. 

TABLE 4.10 QUARTERLY PERFORMANCE OF MAINTENANCE ACTIVITIES 

Case Quarter 
1 

Quarter 
2 

Quarter 
3 

Quarter 
4 

Categories Total Case Quarter 
1 

Quarter 
2 

Quarter 
3 

Quarter 
4 1 2 3 4 5 

Total 

CRR 
(k$) 

B 517.74 62.26 13.13 0.39 204.79 174.42 32.31 60.16 121.84 593.51 

CRR 
(k$) 

C 516.19 66.12 16.63 0.84 188.47 197.00 32.31 60.16 121.84 599.78 
CRR 
(k$) D 497.85 63.44 19.11 0.35 188.36 174.42 35.98 60.16 121.84 580.74 
CRR 
(k$) 

E 491.98 65.22 19.28 0.53 188.36 174.42 32.31 60.16 121.84 577.09 

CRR 
(k$) 

F 520.07 52.56 17.27 0.39 188.36 174.42 32.31 60.16 135.04 590.28 

CRR/ 
Hour 

($/Hou 
r) 

B 44.319 5.843 1.453 0.155 16.926 44.518 7.919 8.356 18.461 17.510 
CRR/ 
Hour 

($/Hou 
r) 

C 47.166 6.308 1.502 0.215 24.388 18.241 7.919 8.356 18.461 16.474 
CRR/ 
Hour 

($/Hou 
r) 

D 46.097 6.839 2.070 0.187 25.236 44.518 5.997 8.356 18.461 18.625 

CRR/ 
Hour 

($/Hou 
r) E 51.248 7.843 2.265 0.187 25.236 44.518 7.919 8.344 18.461 19.719 

CRR/ 
Hour 

($/Hou 
r) 

F 44.450 5.196 1.959 0.175 25.236 44.518 7.919 8.356 13.239 17.963 

CRR/ 
Cost 
ratio 

B 3.565 0.548 0.135 0.013 1.724 2.238 0.826 0.788 1.631 1.534 
CRR/ 
Cost 
ratio 

C 3.525 0.472 0.113 0.017 2.513 0.902 0.826 0.788 1.631 1.241 CRR/ 
Cost 
ratio 

D 3.768 0.624 0.188 0.015 2.587 2.238 0.631 0.788 1.631 1.619 
CRR/ 
Cost 
ratio E 4.025 0.706 0.192 0.011 2.587 2.238 0.826 0.602 1.631 1.584 

CRR/ 
Cost 
ratio 

F 3.555 0.471 0.182 0.014 2.587 2.238 0.826 0.788 1.182 1.552 
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From Figure 4.16-4.20 and Table 4.10, we can draw the following conclusions: 

1. For each case, we can see that category 1 and 2 (tree trimming and transmission line 

maintenance) will consume more resource and thus produce more benefit than other 

categories. This is because they have significantly more proposed maintenance tasks (89) 

than transformer minor maintenance (26), transformer major maintenance (20) and circuit 

breakers (35). Also they require less labor hours and this permit several tasks to be 

scheduled at the same week as early as possible, as shown in Table 4.6. 

2. For most categories, when more resource is allocated, more cumulative risk 

reduction is produced (Fig 4.16-4.20) but the general efficiency (CRR/Hour, CRR/Cost) 

of this category will drop, as shown in Table 4.10. This is reasonable because the optimal 

algorithm chooses most efficient tasks with available resources. When more resource is 

available, less efficient tasks will be chosen. 

3. Category 4 (transformer major maintenance) does not show an increase with CRR 

with more allocated resources. This is because this category is much more labor 

constraint. We can see that in Table 4.6 that the tasks of this category will be scheduled 

until the end of the year. Our reallocation of labor resources is not enough to allow 

multiple tasks scheduled at the same week. Therefore the category 4's result was not 

affected by our resource allocation from case B to F. 

4. From Table 4.10 we can see that generally, category 2 (transmission line 

maintenance) has the highest labor efficiency (CRR/Hours), and category 1 and 2 (tree 

trimming and transmission line maintenance) have the highest cost efficiency 

(CRR/Cost). This is because these two maintenance activities generally cause more 

failure probability reduction than those in other categories, together with less resource 

consumption. This result gives us some direction in resource re-allocation between 

different categories. 

5. When we compare the 5 cases in Table 4.10, we can see that case C, in which the 

category 2 (transmission line maintenance) is emphasized with more resource allocation, 

provides the highest output (599.78k$ of CRR). This is because it is category with most 

efficient resource characteristic, as stated in 5. But it also has the lowest general 

benefit/cost ratio (CRR/Hours, CRR/Cost). This is because more available resource 
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permits the program to have more less-efficient tasks to be scheduled. That is the say, by 

emphasizing category 2, we can schedule more tasks, but with lower benefit/cost ratio. 

From above analysis, we can get performance of each category of maintenance 

activities in our objective function - cumulative risk reduction and their efficiency in 

utilizing the resources. And we can get direction of resource re-allocation between 

different categories based on it. However, such analysis is not enough to produce 

accurate resource reallocation because the scheduling program is constrained by two 

resources (labor and cost) and a good combination of resource allocation is needed to get 

better performance of the whole scheduling program. I will extend our effort with a more 

accurate method in the following section. 

4.7.10 Continuously scheduling maintenance activities with "rolling" procedure 

From the Fig 4.16-4.20 we can see that it is obvious in each case, the CRR decreases 

dramatically from the first quarter to the last quarter of the year. This is because the 

objective function (CRR) is cumulative over a year, and thus: I) The optimization 

algorithm will choose the tasks which will produce the most objective values (CRR) to be 

scheduled as early as possible, since the risk reduction is cumulative over time. II). The 

tasks scheduled at the first quarter will be credit with the whole year's risk reduction but 

the tasks scheduled at the second quarter will only have the risk reduction of the next 3 

quarters of the year credited. And the tasks scheduled at the last quarter of the year nearly 

have no risk reduction, comparing with the tasks scheduled at the beginning of the year. 

This is because we only evaluate the benefit in one year's horizon. A feasible solution of 

this issue might be a 'rolling' execution of this procedure, in which the whole year will 

be divided into different periods, such as quarters. For each quarter, we span the study 

period to one year from the start of that quarter and perform risk simulation and 

optimization accordingly. Table 4.11 gives an example of this rolling procedure of 

scheduling maintenance activities with resource allocation of case A in Table 4.8. It is a 

five-quarter maintenance scheduling with 2 years' time frame. With the first quarter, the 

maintenance scheduling is performed in the same procedure as illustrated in Table 4.7 but 

we only recorded the task scheduling for the first quarter. After each quarter, the 

scheduling program will be extended with another quarter with the same, with a full 
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year's budget and labor. The only changes from quarter to quarter are the candidate tasks 

and their risk simulation results. The new problem excludes the tasks that already have 

been scheduled and will be set up as (4.35)-(4.41), with new simulation results of 

cumulative risk reduction and possible new task candidates. With this 'rolling' procedure, 

we can account for the yearly benefit for each maintenance activity more accurately. 

In Table 4.11, quarter l's result is based on one-year simulation result from the first 

quarter to the fourth quarter, and the quarter 5's result is based on simulation from the 

fifth quarter to the eighth quarter, which means the five quarters' maintenance scheduling 

is based on the system information of two year's time frame. Fig 4.21 gives the 

illustration of cumulative risk reduction achieved for each quarter in this rolling 

procedure, together with the resource consumed in each of the category. From the Fig 

4.21 we can see that the benefit of maintenance in each quarter is more evenly 

distributed. This is because each quarter's result is based on one-year's risk reduction 

benefit. The difference of results among different quarters comes from the changes of 

maintenance tasks and different yearly system simulation starting from each quarter. 

TABLE 4.11 QUARTERLY PERFORMANCE OF MAINTENANCE SCHEDULING WITH "ROLLING" 

PROCEDURE 

Category Quarter 1 Quarter 2 Quarter 3 Quarter 4 Quarter 5 Total 

1 164.14 154.46 139.26 149.12 85.83 692.81 

CRR 
(k$) 

2 152.09 201.23 148.09 140.36 184.88 826.64 
CRR 
(k$) 3 28.17 18.91 21.98 29.65 24.63 123.34 
CRR 
(k$) 

4 57.22 12.42 34.77 37.94 17.01 159.35 
5 101.35 88.58 136.64 96.86 44.06 467.49 
1 48.84 50.25 50.28 49.68 49.92 248.97 

Hour 2 60.66 60.96 60.69 61.14 61.62 305.07 
(100 3 31.20 31.20 31.20 31.20 31.20 156.00 

Hours) 4 62.40 62.40 62.40 62.40 62.40 312.00 
5 39.00 39.00 39.00 39.00 39.00 195.00 
1 44.81 34.60 38.68 30.60 19.54 168.23 

Cost 
(k$) 

2 51.55 45.12 51.28 49.93 55.69 253.57 
Cost 
(k$) 3 34.12 7.95 2.49 5.78 25.50 75.85 
Cost 
(k$) 

4 43.20 11.41 32.65 5.89 3.67 96.82 
5 58.23 23.12 35.64 28.62 28.66 174.27 
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Quarter 1 
Quarter 2 

Tree Trimming 

I Trans Line 

I Xfmr Minor 

Xfmr Major 

CB Maint. 

Quarter 3 
Quarter 4 

Quarter 5 

CRR (k$) 
Labor (1 OOHra) 

Cost (k$) 

Fig 4.21 Quarterly CRR and resource allocation for case A with "rolling" procedure 

4.7.11 Resource reallocation based on Lagrange Multipliers 

From optimization results in Table 4.6 and analysis in section 4.6.8 we can see that 

the resource constraint has very important effect on the result of optimization. And it is 

very likely that there is 'imbalance' of the resource reallocation between the different 

categories. So the situation exists when one resource constraint is dominating while the 

other one is redundant. The reallocation of resource could make the resources more 

effectively distributed between different categories and thus maximize the optimization 

results. 

In solving the linear programming of (4.35), Lagrange multipliers are solved for 

different constraints. The Lagrange multipliers indicate the decrease in objective function 

for a per-unit increase in the right hand side of the corresponding constraint. So we can 

take them as good indicators for resource allocations, although they are only multipliers 

for the relaxed linear programming and thus may have some error with the real 

multipliers for the integer solution. The error may be fixed by the iteration of the resource 

allocation until an optimal point is reached. An algorithm was designed to reallocate the 

resource according to value of Lagrange multipliers of constraints of budget and labor: 
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Suppose we have N categories of maintenance activities i=l each with allocated 

resource C,. The principle of the resource allocation is that resource is re-allocated from 

the categories with lower value of Lagrange multipliers to the category with the highest 

multiplier. 

1) Solve the relaxed linear programming (4.35)-(4.41) of the problem. Get the 

Lagrange multiplier X,- for resource constraint of each category i. The category 

with the highest multiplier lmax will be reallocated more resources from other 

categories. Set the total reallocated resource amount AC. 

2) If there is a category with multiplier of 0, it means the category has redundant 

resource and all of the reallocated resource will come from that category. 

3) If all of multipliers are less than zero, then the resource allocation will be 

determined by the difference between these multipliers with the maximum 

Lagrange multipliers: 

AC, = — x AC (4.57) 

~ Amx ) 
y'=l 

For labor constraint, since it is a weekly constraint, there is a lower limit of the 

resource allocated to each category, so that the labor in that week is enough to 

perform at least maintenance activity. This is especially important for transformer 

maintenance, which might need more people in each mission. When the lower 

limit is reached, then the labor in that category will be fixed at the lower limit and 

stop being adjusted. 

4) Modify the constraints with allocated resources and go back to 1). Iteration 

stops when the optimal result is reached. 

Table 4.12 shows different resource allocation among maintenance categories for 

cases A1-A6. In each case, the allocation is made so that one type of maintenance is 

favored over the others. And the resources of money and labor are adjusted 

simultaneously. In 4.13, the Lagrange multipliers for every category, and for each case, 
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are listed. Form the results we can see that A5 provides highest outcome and the iteration 

should stop there. More detail adjustment might be performed by reducing the step length 

but this will require longer computation time. 

TABLE 4.12: RESOURCE ALLOCATION AMONG MAINTENANCE CATEGORIES 

Case Maintenance category 

1. Tree trimming 2. Trans. Line 3. Transformer 4. Transformer 5. Circuit Breaker 
maintenance minor maint. major maint. maintenance 

Budget Crew Budget Crew Budget Crew Budget Crew Budget Crew 
A1 80000 480 125000 560 32000 560 120000 600 90000 480 
A2 80000 456 165000 760 32000 469 80000 531 90000 464 
A3 78192 450 185000 743 27090 343 72450 480 84268 664 
A4 76980 500 205000 793 20565 276 63140 480 81315 631 
A5 91980 516 201584 813 18767 240 56154 480 78515 631 
A6 94980 511 201266 833 18635 240 53770 480 78347 615 

TABLE 4.13: REALLOCATION OF RESOURCES BASED ON LAGRANGE MULTIPLIERS 

Case Case A1 Case A2 Case A3 Case A4 Case A5 Case A6 
Lagrange 1 -16.50 -16.44 -16.29 -19.47 -13.45 -12.99 

multipliers 2 -27.18 -21.16 -18.52 -11.60 -12.20 -12.19 
on budget 3 -8.75 -8.33 -6.52 -15.33 -12.93 -12.84 
constraint 4 0 -1.43 -1.40 -3.38 -4.06 -6.913 

5 -7.46 -6.18 -13.09 -13.02 -12.79 -12.76 
Lagrange 1 -44.91 -47.23 -47.63 -41.04 -41.49 -42.31 

multipliers 2 -57.34 ^3.93 ^7.88 ^5.96 ^4.36 -43.87 
on labor 3 -10.32 -11.58 -14.99 -14.74 -18.67 -18.69 

constraint 4 -21.85 -20.61 -31.27 -29.39 -28.32 -26.57 
5 ^8.85 -48.80 -31.87 -33.89 -33.72 -33.04 

CRR (k$) 569.38 614.82 624.77 626.29 631.53 627.41 

From the results shown in Table 4.13 we can see that we get significant increase of 

CRR by reallocating the resources between different maintenance categories, from 

569.38k$ to 631.53k$ (10.9% increase). By tracking the reallocation, with reference of 

Table 4.10 we can find the resource is flowing out of categories with lower benefit/cost 

ratios to those with higher benefit/cost ratios. For example, the labor resource is 

reallocated with the direction from category 3(transformer minor maintenance), 4 

(transformer major maintenance) to 1 (tree trimming), 2 (transmission line maintenance) 
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and 5 (CB maintenance); and budget resource is flowing out of category 3, 4 and 5 to 1 

and 2. 

4.7.11 Effect of constraints on optimization results 

I have investigated the effect of budget and labor reallocation between different 

categories, with fixed total available resources. However, in transmission asset 

management, a good investment level of the total resources needs to be found, to get best 

general performance of the maintenance scheduling. To help analyzing the performance 

of the maintenance-scheduling program, indices reflecting different attributes of the 

solution were introduced as described in what follows: 

1) CRR: Cumulative Risk Reduction. This is the value of the objective function and a 

high-level indicator of the solution quality. We identified it as 631.53 in the case 

scenario A5 in section 4.7.10. 

2) CRR/Cost: Ratio of CRR to total cost. This index indicates the risk reduction per unit 

dollar spent, where higher values indicate more desirable solutions. 

3) Cost/Budget (%>): This index indicates, for each maintenance category, the percentage 

of the budget actually spent. Solutions that have values of this index significantly less 

than 100% indicate that the corresponding category may be over-budgeted. 

4) CRR/labor. Ratio of CRR to total labor in hours. This index indicates the risk 

reduction per hour of human labor, where higher values indicate more desirable 

solutions. 

5) Labor/available labor (%): This index indicates, for each maintenance category, the 

percentage of the available labor actually utilized. Solutions that have values of this 

index significantly less than 100% indicate that the corresponding category may have 

an over-allocated number of assigned personnel. 

6) C7?i?/Total possible CRR (%): This index indicates the percentage of possible risk 

reduction that is actually achieved via the solution. The possible risk reduction can be 

computed in two ways. It can be computed assuming there are no labor constraints so 

that all selected tasks (given the budget constraint) could be scheduled in the first 

week. The index computed in this way provides a measure of additional benefit that 

could be achieved from additional labor under the given budget. Alternatively, it can 
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be computed assuming there are no labor or budget constraints so that all proposed 

tasks could be scheduled in the first week. The index computed in this way provides a 

measure of additional benefit that could be achieved from additional budget and labor 

resources. I have elected to compute the index in the first way. For both ways, 

solutions that have values of this index much less than 1 stand to significantly benefit 

from additional financial and/or labor resources. 

7) Unscheduled number of tasks/Total number of tasks (%): This index indicates the 

percentage of tasks that could be completed with additional financial or labor 

resources. Solutions that have values of this index close to 1 may stand to 

significantly benefit from additional financial and/or labor resources. 

I computed and plotted these various indices for two scenarios based on the case A5, 

which has the best resource allocation. In Section 4.7.11.1,1 will fix the labor constraints 

for each maintenance type and vary the budget constraint. In Section 4.7.11.2, I will fix 

the budget constraints for each maintenance type and vary the labor constraints. 

4.7.11.1 Effect of budget variation on maintenance scheduling 

To illustrate the effect of total budget on maintenance scheduling, a fixed number of 

crew members are assigned to each type of maintenance, as shown in Table 4.14, and the 

budget is varied from $246k to $648k. The results in terms of the various indices are 

summarized in Table 4.15. 

TABLE 4.14: LABOR LEVEL FOR BUDGET VARIATION 

Maintenance Maintenance description Labor Hours 
type 
1 Tree Trimming 516 
2 Transmission line maintenance 813 
3 Transformer minor maintenance 240 
4 Transformer major maintenance 480 
5 Circuit breaker maintenance 631 

TABLE 4.15: INDICES CALCULATED FROM DIFFERENT BUDGET SETTINGS 
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Total CRR CRR/ CRR/ Cost/ Labor/ CRR/ Unscheduled 
Budget (k$) Cost labor Budget Available Possible Maintenance 
(k$) (%) labor (%) CRR(%) (%) 
246 587.85 2.59 34.65 92.48 37.98 94.78 73.70 
268 615.94 2.38 31.38 96.36 41.83 93.77 65.62 
291 617.15 2.30 25.25 92.39 45.19 93.70 65.17 
313 627.63 2.00 26.77 100.4 50.00 93.01 53.48 
335 628.65 1.92 25.13 97.82 54.33 92.89 50.78 
358 631.32 1.80 23.59 98.06 57.21 92.73 46.30 
380 633.83 1.65 21.65 101.33 62.50 92.46 38.65 
402 630.39 1.57 20.43 100.16 68.75 91.92 36.86 
425 632.06 1.49 19.57 100.11 71.63 91.72 32.81 
447 631.53 1.40 18.36 100.66 75.96 91.35 30.12 
469 630.94 1.39 18.13 96.59 76.44 91.40 2966 
492 632.62 1.28 16.70 100.56 84.13 91.07 21.58 
514 632.43 1.26 16.58 97.67 85.58 91.06 22.92 
536 632.25 1.22 16.07 96.45 87.98 90.92 20.67 
559 632.03 1.21 15.71 93.26 91.35 90.92 19.33 
581 632.31 1.19 15.39 91.46 93.27 90.89 17.53 
603 632.59 1.18 15 20 88.85 93.75 90 83 16.18 
626 633.11 1.14 14.65 88.38 96.64 90.62 12.58 
648 633.18 1.14 14.54 85.73 98.08 90.59 11.69 

Table 4.15 indicates that in some cases, the cost/budget is a little above 100%. It is 

caused by a program feature that allows a maintenance task to be scheduled if the 

remaining budget is very close to the cost of next maintenance to be scheduled. 

Variations in indices with increasing budget are illustrated in Figs. 4.22 to 4.28. I have 

made the following observations: 

1. CRR: Fig. 4.22 shows that as the budget increases, the cumulative risk reduction 

increases until a budget of about $400k after where the budget covers the cost of all 

the maintenance. Budget increases beyond that value are of no value. 

2. CRR/cost and CRR/total labor: Figs. 4.23 and 4.24 indicate that as the budget 

increases, the CRR per dollar cost and CRR per hour of labor decreases, indicating 

that resource effectiveness in reducing risk tails off as resources increase. This is not 

surprising since our algorithm always selects the most effective maintenance tasks 

first, so as resources increase, the less effective maintenance tasks will be selected, 

resulting in the trend seen in Figs. 4.23 and 4.24. This does not necessarily imply that 

one should not utilize the greater resource levels. To this end, it can be commented 

that the decision to allocate a certain level of resources depends on the effectiveness of 
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those resources in reducing risk, quantifiable by our program, but it also requires 

information regarding the effectiveness of those resources if expended elsewhere in 

the company. 

3. Cost/budget: Fig. 4.25 indicates that as the budget increases, the maintenance cost 

approximately equal the budgeted dollars (so that the budget constraint is active) until 

the budget becomes very large (about $500k), and for larger budgets, the labor 

constraints become active and maintenance cost is almost constant. Fig. 4.25 also 

indicates that cost/budget ratio increases between $25Ok and $35Ok from about 93% to 

almost 100%, implying that lower budgets are not totally utilized whereas higher 

budgets are. This apparent anomaly is a result of the lumpiness of maintenance 

projects, i.e., the lower budgets became "stuck" at 93% because any additional project 

would result in a budget limit violation, whereas the higher budgets got "stuck" at 

values much closer to 100%. 

4. C7?/?/Total possible CRR: Fig 4.26 shows that as the budget increases, this index 

decreases, indicating that the rate of increase of CRR with budget is significantly less 

than the rate of increase of possible CRR with budget. The reason for this is that 

higher budgets allow more tasks to be selected, but because of labor constraints, most 

of these tasks must be scheduled in the latter part of the year. Tasks scheduled at the 

later part of the year do not provide much CRR but do provide significant amount of 

possible CRR. 

5. Labor hours/available labor hours: Fig. 4.27 shows that as the budget increases, the 

(labor hours used)/(available labor hours) increases. This is reasonable as long as labor 

constraints are not active, implying crews are more fully utilized as budget increases. 

6. Unscheduled maintenance: Fig. 4.28 shows that the percentage of unscheduled 

maintenance tasks decreases as the budget increases. 
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Fig. 4.28: Unscheduled maintenance 

4.7.11.2 Effect of labor variation on maintenance scheduling 

To illustrate the effect of labor on maintenance scheduling, fixed budgets are assigned 

to each type of maintenance, as shown in Table 4.16, and the labor hour varies from 1798 

to 3886 hour per week, as indicated in Table 4.17. The results in terms of the various 

indices are summarized in Table 4.17. 

TABLE 4.16: BUDGET LEVEL FOR LABOR VARIATION 

Maintenance Maintenance description Budget ($) 
type 
1 Tree Trimming 94980 
2 Transmission line maintenance 201266 

3 Transformer minor maintenance 18635 
4 Transformer mai or_maintenance 53770 
5 Circuit breaker maintenance 78347 
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TABLE 4.17: INDICES CALCULATED FROM DIFFERENT LABOR SETTINGS 

Total labor CRR CRR/ CRR/ Cost/ Labor/ CRR/ Unscheduled 
hour per (k$) Cost labor Budget Available Possible Maintenance 
week (%) labor (%) CRR(%) (%) 
1798 568.39 1.53 19.76 83.08 78.08 8660 42.47 
1896 575.86 1.54 19.76 83.49 76.54 86.97 43.24 
1994 585.75 1.51 19.41 86.82 76.15 87.18 39.77 
2092 586.71 1.53 19.24 85.93 73.85 87.95 40.93 
2190 601.99 1.54 19.89 87.34 71.54 89.02 40.93 
2288 601.90 1.52 19.51 88.56 6962 88.76 37.45 
2386 607.48 1.54 19.70 88.00 68.08 90.12 37.45 
2484 602.05 1.50 19.43 89.74 65.39 88.97 35.91 
2582 612.90 1.50 19.63 91.21 64.62 90.31 3198 
2680 63153 1.40 18.36 100.66 60.77 91.35 30.12 
2814 630.85 1.45 18.86 97.35 60.00 91.62 28.96 
2948 638.91 1.44 18.59 100.67 59.62 92.53 25.10 
3082 640.89 1.44 18.84 99.86 55.77 92.71 24.32 
3216 645.05 1.44 18.80 100.45 55.39 93.28 23.94 
3350 640.71 1.43 18.68 100.05 53.46 92.67 24.32 
3484 640.55 1.43 18.57 100.41 52.69 92.62 2155 
3618 639.78 1.43 18.69 100.26 51.15 92.50 2155 
3752 647.22 1.43 18.50 101.55 53.08 9155 23.17 
3886 644.89 1.32 18.25 98.26 41.54 95.04 21.11 

Variations in indices with changing labor are illustrated in Figs. 4.29 - 4.35.1 make the 

following observations: 

1. CRR: Fig. 4.29 shows that CRR increases with increasing labor. With increasing 

budget, we observed a leveling off of CRR (see Fig. 4.23) when the budget was 

sufficient to perform all projects. Here, however, increasing labor resources make it 

possible to continuously shift projects earlier in time, so that we do not observe the 

saturation of CRR. 

2. CRR/cost and CRR/total labor: Fig. 4.30 and 4.31 show that as the labor increases, the 

CRR per dollar cost and CRR per hour of labor generally decrease, indicating that 

resource effectiveness in reducing risk increase as labor resources decrease. This 

effect is due to the same reason as 4.23 and 4.24 that the program always selects the 

most effective maintenance tasks first so as labors increase, the less effective 

maintenance tasks will be selected, resulting in the trend seen in Fig. 4.30 and 4.31. 
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3. Cost/budget: Fig. 4.32 indicates that as the labor increases, the percent of budget 

actually utilized continues to increase. This effect is very reasonable since the 

additional labor provides the ability to perform more maintenance tasks. 

4. Labor hours/available labor hours: Fig. 4.33 shows that as the labor increases, the ratio 

of labor hours used/available labor hours decreases from 78% to 41%, indicating that 

labor efficiency is reduced with the increase of labor resources. 

5. CRR/Iotal possible CRR: Fig 4.34 shows that as the labor increases, this index 

increases, indicating that the rate of increase of CRR with budget is significantly 

higher than the rate of increase of possible CRR with budget. The reason for this is 

that with more labors, more tasks can be scheduled earlier. This will cause significant 

increase of CRR since it decreases with time. 

6. Unscheduled maintenance: Fig. 4.35 shows that the percentage of unscheduled 

maintenance tasks decreases as the labor increases. 
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It is similar with the case of different budget. Some of the indices here are contradictive 

because they represent different part of interest of the budget makers. Balance among them is 

needed to make the best decision. 

4.7.12 Decision making on resource scheduling and allocation 

Our program does not only provides the best selection and scheduling of current 

maintenance activities, with fixed resource allocations, it also provides useful information on 

how to make plans on how to make budget and labor resource scheduling, so that the 

maximum efficiency will be achieved. It should be based on calculation on optimization of 

different combination of resource allocations. Fig 4.36 gives the variation of the objective 
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function with different resource scenarios. The total budget varies from 111k dollars to 961k 

dollars and the labor varies from 0.67k to 5.76k hours per week. 

400 OUU 

Budget (k$) 
Labor 
(kHour/week) 

Fig. 4.36: CRR surface with different resource conditions 

From Fig 4.36 we can see that the total objective function increase with the increase of 

the labor or budget constraint under most of the conditions. There is some lumpiness of the 

surface. This is due to the sub-optimal feature of our program. Under some conditions, the 

optimal solution cannot be found and is replaced with the sub-optimal solution found by our 

program. However, it achieves much faster speed. Otherwise, precise calculation with so 

many combinations of resource conditions for industry size problem is impossible. Here we 

may need to calculate the total cost of the maintenance. For example, total cost of the 

maintenance can be calculated as the summation of the project cost and the wages of the 

labors. Suppose the hourly wage for each employee is W dollars/hour, and then the total cost 

of each resource scenarios can be calculated as: 

TotalCost = BudgetUsed($) + LaborUsed(Hour) * W($/hour) (4.58) 
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Here BudgetUSed is the total money spent in the budget after scheduling; LaborUsed is 

the actual usage of the labors after scheduling. Then the efficiency of the maintenance 

scheduling is: 

E = CRR / TotalCost (4.59) 

A common practice will be to choose the allocation with the highest budget and labor 

efficiency with required objective function value. The procedure to be suggested in doing this 

is: 

1) Determine the required objective function threshold CRR ' of maintenance scheduling. 

2) Perform the maintenance scheduling with combination of different resource allocation 

within reasonable range, as in Fig 4.36 

3) For each combination, calculation of the total cost of the scheduling and the efficiency 

ratio with (4.58) and (4.59) is performed. 

4) Choose the scheduling scenario with the highest efficiency ratio with required objective 

function CRR>CRR 

Suppose the hourly wage is set as 16$/hour, Fig 4.37 is the efficiency ratio of 

maintenance scheduling under different resource combinations. From Fig 4.37 we can see 

that maximum efficiency is achieved with the minimum resource allocation. However, we 

also need to meet the preset objective of our maintenance scheduling. Suppose we want to 

have a CRR>620k$, then we can use the Lagrange multipliers to find the most efficient 

resource scheduling while satisfying CRR>620k$, which is BudgetUsed =227.85k$ and 

LaborUsed=\692>2iio\xxs. Under such resource planning, the optimal CRR is 628.90k$ and 

efficiency ratio is 1.2609. 
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Fig. 4.37: Efficiency Ratio with different resource allocations 

4.8 Maintenance scheduling coordination between transmission owners 

Since the utility companies or transmission owners make their outage schedules 

according to their own sub-system and tie line information. It is possible that the outages of 

different transmission owners, when they are combined, will cause some problem to the 

security of the whole system. The activity of the outage planning should be coordinated with 

higher level of control, which is usually performed by the independent system operator 

(ISO). 

ISO was setup according to the need of restructure of the power industry in 1990's, at 

different regions of power grids in US. They are charged with the responsibility of managing 

the flow of electricity along the long-distance, high-voltage power lines that make up the 

bulk of transmission system. The objective of this non-profit organization is to open the 

energy markets to competition and thus the transmission owners (Transco) turned their 

private transmission power lines over to ISO's management. The mission of ISO is to 
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safeguard the reliable delivery of electricity, facilitate markets and ensure equal access to the 

transmission lines. So any outage scheduling of major transmission/generation component 

made by the transmission owners for should be submitted to the ISO for approval. ISO will 

investigate the impact of this outage and approve/deny the request based on system reliability 

requirement. Thus the coordination of the outages is an important task for ISO to assist the 

transmission owner customers to perform their duties while maintaining the system safe. 

Currently the ISO is using a first come, first serve policy, in which it means it approves the 

request submitted early and deny the request submitted later, if the later request is conflict 

with the previous request of outage. Our program can provide a more flexible solution to the 

system outage coordinator, since the tasks are scheduled based on redispatch cost induced 

risk and risk reduction. We can use the redispatch cost due to the outage conflict as a 'lever' 

to adjust the benefit of the transmission owner's maintenance scheduling and thus coordinate 

their outage request. The whole procedure is described in Fig. 4. 38. 

As indicated in Fig 4.38, after the Transmission owners submit their scheduled outage 

request, the ISO can evaluate the impact of the outages to the system security. If any 

violation of reliability is found, the ISO will calculate the cost of the remedy actions to 

relieve the stress due to these outages. The remedy actions may contain generation 

redispatch, reactive power compensation and load shedding, etc. Then ISO will send this 

calculation back to the transmission owners as extra cost of scheduling this outage at the 

specific moment. This extra cost will force the transmission owners to change their estimated 

benefit from the maintenance, which is the cumulative risk reduction CRR(k,m,t) in (4.35) 

to: 

C R R  ' ( k , m , t )  =  C R R  ( k , m , t )  -  C r ( k , m , t )  (4.60) 

where Cr is the extra cost of remedy action and it might be a very large number. This will 

almost forbid that maintenance and corresponding outage to be performed at a specific time t, 

unless the transmission owner is willing to pay for it. After rescheduling, the transmission 

owners will submit their new schedules to the ISO and have the check again. This iteration 

will proceed until no violation is found. Then the final outage schedule will be approved by 

ISO. 
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Fig. 4.38: Flowchart of maintenance outage coordination 

A simple example has been setup to show this procedure. First the tasks in Appendix 

2 are divided into two groups, simulating two Transco companies making their own 

maintenance scheduling with budget and labor resource limit respectively. The two lists of 

maintenance scheduling then was submitted to the ISO and evaluate their reliability impact 

within the whole system. An AC power flow is performed to calculate the outage impact for 

each hour. To simplify the problem, only overload problem is considered. If any overload is 

found due to some planned outage, an economic dispatch calculation is performed to 

calculate the cost of the redispatch to release the overload. The final result was shown in 

Table 4.18. 

TABLE 4.18 EXAMPLE OF MAINTENANCE OUTAGE SCHEDULING 
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CRR of 
Transco 1 

(k$) 

CRR of 
Transco2 

(k$) 

Total 
CRR(k$) 

Violation Reason of the 
violation 

Remedy cost 
needed 

1 341.33 314.39 655.72 
At week 2, overload at 

69kv line (301-175) 
Outage of 

transformer line 12 
4721.3$ 

2 341.33 313.98 655.32 
At week 3, overload at 

161kv line(23-33) 
Outage of 

transmission line 32 
2659.8$ 

3 341.01 313.98 655.00 
At week 4, overload at 

161kvline(23-33) 
Outage of 

transmission line 32 
4243.9$ 

4 338.46 313.98 652.44 None 

In Table 4.18, two companies (Trnascol and Transco2) made their own scheduling of 

outages and then submit to the ISO. We can see that the initial submission of Transco2 

caused some overload violation during week 2, which induced a redispatch cost of $4721.3. 

The new cost of this action forced Transco to reschedule their maintenance. In the second 

and third round of this iteration, an outage of Transco 1 caused some violation in week 3 and 

week 4 respectively. Similar procedure made Transco 1 to reschedule their maintenance 

outages until no violation was found. We can see from the results that the final total 

cumulative risk reduction, which is benefit of the maintenance scheduling, is reduced. It is 

the maximum benefit we can get from the maintenance while maintaining the system 

security. 
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Chapter 5 Conclusion 

The purposes of our study are very simple. They can be concluded as two major objectives: 

1) Quantify the maintenance benefit to the transmission system. 2) Setup the asset 

management model and maximize the benefit in 1) within given constraints. However, efforts 

should be made in many aspects in our study to achieve the goal. This dissertation proposes 

most of our work in finding a rigorous method of allocating economic resources for bulk 

transmission system maintenance. It can be concluded that there is significant potential for 

using the procedures and methods developed in this thesis to expend maintenance resources 

and therefore better manage aging assets. The salient points and major contributions of this 

approach are: 

a. Maintenance Scheduling in Transmission Asset Management: 

This thesis present a complete framework for maintenance asset management for electrical 

transmission system, based on estimation of components failure's impact to the system and 

resource constraints. This approach provides effective methods in allocating economic 

resources systematically and strategically. The inclusion of cumulative-over-time risk is 

essential to account for system failure consequences and its variation over time. A systematic 

procedure is given for including in the decision process the influence of undesired 

operational performance created by equipment failure in terms of system security and 

component damage. 

b. Failure Mode and Effect Analysis for Power Transformers: 

Mathematical models of transformer failures probabilistic analysis demand an extensive 

relationship among condition monitoring techniques, failure probabilities, and maintenance 

tasks of the device. Typical transformer failure modes along with their causes as well as 

corresponding maintenance activities are addressed. This thesis also provides the summation 

of the techniques of monitoring of transformer conditions and identification of failure modes, 
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which are important to the maintenance engineer, to make decisions on maintenance 

activities and frequencies. 

c. Hazard rate estimation based on condition monitoring data. 

Different methods of estimating failure probability of transmission components were 

summarized and compared in this thesis. Markov model was set up to simulate the 

deterioration process of the transmission components. By utilizing the Hidden Markov Model 

(HMM) in the hazard rate estimation, we can get the best fit of the model parameters to the 

observations - this method can trace the component deterioration process in the sense of 

maximum likelihood with the observation data and thus provides relatively accurate 

estimation of instantaneous hazard rate of the transmission components. Also the HMM 

model can deal with incomplete observation data, which is almost unavoidable in condition 

monitoring or routine test. This HMM model can be extended to any deterioration model 

which can be represented by a Markov model with condition monitoring data. 

d. Long Term Sequential Risk Simulation: 

This thesis utilizes a sequential simulation to compute operational risk accounts for 

impacts of components failure to the system. Components failure consequences are analyzed 

with respect to system impacts and property damage. Benefit of maintenance are calculated 

as redispatch cost saving and the prevention of property damage. My work simulates the 

benefit incurred either due to the hazard rate reduction or life extension, based on the time 

horizon that the maintenance are performed. DC optimal power flow (OFF) algorithm is used 

in estimating the redispatch cost of the system. This simulator takes the probabilistic cost 

saving as the risk reduction benefit of maintenance, which provides a quantified, credible 

index for scheduling maintenance activities in the optimization procedure. 

e. Maintenance selection and scheduling 

This thesis develops a systematic way to identify the optimal selection and schedule of 

maintenance tasks so as to maximize the risk reduction achieved from a given allocation of 

financial and human resources. The optimization problem is integer, with multiple 
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constraints, has high dimension, and therefore is quite challenging to properly solve. 

Different solution methods have been utilized and investigated, and it is concluded that 

relaxed linear programming with DP knapsack solutions is a very effective solution method. 

It provides very good solutions in a computationally feasible way. 

f. Resource allocation in maintenance asset management: 

With the help of Lagrange multipliers, the optimizer may also be used to provide insight 

into the effects on solution quality of different resource allocations. Such insight is useful in 

managerial decision-making associated with company budgeting processes. 

g. Maintenance Coordination: 

This thesis uses the probabilistic redispatch cost as representative of reliability risk and 

thus the objective of our work to maximize. This is same with the industry goals and can 

easily coordinate the maintenance or other asset management activates between different 

industry utilities. The fast speed of our optimization algorithm provides the feasibility of this 

coordination. 

Suggested follow-on work: 

A good plan of maintenance scheduling depends on good understanding of the 

transmission system. The principle of effective maintenance asset management is the 

resource goes to the components which need the care mostly. This leads to the definition of 

'risk'. A good modeling of 'risk' and accurate simulation is the key of success of 

maintenance asset management. The following proposed approach might improve the 

evaluation of risk and thus the efficiency of maintenance scheduler: 

a. Hazard rate estimation 

While in utilizing the Markov model to simulate the deterioration process of the 

components, we assume that each failure mode is independent with other mode and thus the 

deterioration process for each mode is also independent. In practice the mutual-effect of the 

failure modes might exist. For example, the cellulose decomposition can speed up the 

deterioration of oil and vise versa. It is difficult to find the relationship between different 
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failure modes because it might be involved in complex physical or chemical processes. The 

utilization of the score system is a heuristic method of solving this problem but the rules to 

setup the criteria is generally based on experiences and need to be updated with most current 

field data and new experiences. 

b. Long term simulator: 

1. Optimal power flow: Our risk simulator utilized DC optimal power flow to 

calculate the redispatch cost. Under the condition of heavy load, the neglecting of 

system loss might cause some error in results. AC optimal power flow is desired but 

that could cause some problem in extra calculation burden for the year-long hourly 

simulation. 

2. Outage duration: I have indirectly accounted for transformer outage duration via 

modifications in the severity function depending on the status of spares. However, I 

have assumed all other outages are uniform. Probabilistic treatment of outage duration 

is useful in getting the estimation of impact of those outages to the system reliability. 

c. Incorporation of short-term maintenance scheduling 

Incorporation of short-term maintenance scheduling will make the work a complete risk-

based maintenance strategy which covers planning and operation horizon. [69] has 

introduced a scheduling model under restructured power system. Our optimization algorithm 

can be well applied to that method. However, the constraints of scheduled transactions and 

contracts need to be introduced into the optimization model. 
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Appendix 1: Transformer Failure modes, causes, effects and maintenance 
activities 

Failure 

mode 

(criticality) 

Components Failure cause Failure effect Detection 
Maintenance 

Activity 

Frequency 

(typical 

data) 

Insulation 

failure 

(high) 

Insulation 

media 

(Transformer 

oil) 

Oxidization of oil 

Cause corrosion of the various 

metals within the transformer, 

particularly the iron 

Oil screen 

test 

Oil 

degasification; 

Oil filtering of 

non-pcb 

contaminated oil. 

Oil replacement 

1 year 

Insulation 

failure 

(high) 

Insulation 

media 

(Transformer 

oil) 

Thermal 

decomposition of oil 

Breakdown of the oil resulting in 

carbon formation, sludge and 

insulation deterioration. 

Possible catastrophic failure, 

winding to winding or winding to 

tank 

Oil screen 

test 

Oil 

degasification; 

Oil filtering of 

non-pcb 

contaminated oil. 

Oil replacement 

1 year 

Insulation 

failure 

(high) 

Insulation 

media 

(Transformer 

oil) 
Contamination from 

moisture 

Breakdown of the oil resulting in 

carbon formation, sludge and 

insulation deterioration. 

Possible catastrophic failure, 

winding to winding or winding to 

tank 

Oil screen 

test 

Oil 

degasification; 

Oil filtering of 

non-pcb 

contaminated oil. 

Oil replacement 

1 year 

Insulation 

failure 

(high) 

Bushing 

Solid insulation failure 

/moisture ingress 

/external 

contamination 

Possible catastrophic failure/ 

personal safety 

Power factor 

of bushing / 

visual 

inspection 

Replacement, 

cleaning and 

greasing 

6 year 

Fail to 

transform 

voltage 

(high) 

Insulation 

media 
Turn to turn short 

System instability. Loss of load 

and risk of cascading 

DGA(DissoI 

ved Gas 

Analysis) 

Oil 

degasification; 

Oil filtering of 

non-pcb 

contaminated oil 

1 year 

Fail to 

transform 

voltage 

(high) 

Winding 

failure 

Winding failure 

lightning; overload; 

short-circuit from 

foreign object or low 

strength dielectric 

System instability. Loss of load 

and risk of cascading 

Resistance 

test 

Check winding; 

remove foreign 

object or 

damaged 

material; repair 

or replace parts 

of insulation 

materials. 

1 year for 

test 

Fail to 

transform 

voltage 

(high) 

Internal 

bolted/compres 

sion 

Connection loose 

System instability. Loss of load 

and risk of cascading 

Vibration 

analysis 

Offline repair 
1 year for 

analysis 

Fail to 

transform 

voltage 

(high) 

Core Shifted core 

System instability. Loss of load 

and risk of cascading 

Vibration 

analysis 

Offline repair 
1 year for 

analysis 

Fail to 

transform 

voltage 

(high) 

External 

bushing 

connection 

High resistance 

System instability. Loss of load 

and risk of cascading 

Thermograg 

h inspection 

Offline repair 
1 year for 

analysis 

Loss of 

sealing 

(High) 

Conservator 
Moisture ingress, 

oxidization, corrosion Possible catastrophic failure, low 

oil level alarm 

Visual 

inspection / 

signals of 

leaks 

External 

examination for 

oil leaks 

1 month Loss of 

sealing 

(High) Insulation 

media (oil) 

Gasket failure/weld 

fatigue 

Possible catastrophic failure, low 

oil level alarm 

Visual 

inspection / 

signals of 

leaks Sealing/ refilling On demand 

Pressure 

relief device 

block (high) 

Pressure relief 

device 

Corrosion, moisture 

ingress 

Cannot release the pressure during 

internal fault 

Visual 

inspection 

Repair the 

blocked relief 

device 

6 year 
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Winding 

overheat 

(Medium) 

Winding 

Excessive 

overloading, failure of 

cooling system or 

temperature devices 

Winding resistance increase. 

Damage of winding 

Thermograg 

h inspection 

Inspection of 

cooling system. 

Winding 

temperature 

device test 

6 year 

Failure of 

cooling 

system 

(high) 

Fans 
Block, wrong 

direction, deterioration 

Threat to useful lifetime of 

transformer. Can cause outage. 

Affects capacity 

Thermograp 

h alarm scan 

or cooling 

system 

operability 

test 

Repair or 

replacement 
6 years 

Failure of 

cooling 

system 

(high) 

Pumps 
Block, wrong 

direction, deterioration 

Threat to useful lifetime of 

transformer. Can cause outage. 

Affects capacity 

Vibration 

test 

Repair failed 

pumps 

1 year for 

test 

Failure of 

cooling 

system 

(high) 
External heat 

radiation 

External heat radiation 

restriction 

Threat to useful lifetime of 

transformer. Can cause outage. 

Affects capacity 
External 

visual 

inspection 

Remove blocking 

items such as bird 

nets. 

1 year for 

inspection 

Failure of 

cooling 

system 

(high) 

Temperature 

gauge and 

control circuit 

Failure to operate 

Threat to useful lifetime of 

transformer. Can cause outage. 

Affects capacity 

Function test Calibration 6 years 

Earthing 

malfunction 

(medium) 

Neutral 

earthing 

Earthing disconnected 

with the earth or 

resistance too large 

Induced circulating currents 
Grounding 

test 
Repair, replace 

Looseness 

of fastenings 

(medium) 

Connections 

and fastenings 

Looseness of 

fastenings 

Loss of sealing, mechanical 

strength, etc 

Check the 

tightness of 

fastenings 

Fastening 1-10 years 

Surge 

arrester fail 

to operate 

(medium) 

Surge 

protection 

facilities 

Moisture ingress/ 

aging 

Possible internal damage to the 

transformer and bushing 

Power factor 

of surge 

arrester 

Replacement 6 years 

Sudden 

pressure 

relay trip 

fail to 

operate 

(high) 

Sudden 

pressure relay 

trip 

Subcomponent failure/ 

control circuit failure 

Reenergize faulted transformer and 

destroy it/ personal safety 

Functional 

test 

Repair, 

replacement 
6 years 

Malfunction 

Breather 

system 

(medium) 

Breather 

system 

Block or cannot 

filtrate moisture or 

other contamination 

Oil deterioration, overheat 
Visual 

inspection 

Remove the 

blocking items 
6 months 

Malfunction 

Buchholz 

(medium) 

Buchholz 
Wrong settings. 

Deterioration of age. 
Damage of facilities 

Commission 

ing test 
Repair, replace 6 years 
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Appendix 2: Proposed transmission component maintenance tasks 

ID Name Type Hour Cost 
Dura Continge 

tion ncy ID Name Type Hour Cost 
Durât 

ion 
Continge 

ncy 

1 Tr ml 1 120 1000 40 11 12 131 Trans42 2 96 1960 48 172 175 
2 Tr m2 1 48 400 16 11 13 132 Trans43 2 192 2920 96 172 323 
3 Tr m3 1 192 1600 64 13 19 133 Trans44 2 72 1720 36 174 175 
4 Tr m4 1 192 1600 64 14 16 134 Trans45 2 48 1480 24 177 351 
5 Tr m5 1 192 1600 64 14 52 135 Trans46 2 96 1960 48 179 181 
6 Tr m6 1 264 2200 88 16 17 136 Trans47 2 96 1960 48 181 351 
7 Tr m7 1 240 2000 80 17 18 137 Trans48 2 72 1720 36 183 196 
8 Tr m8 1 240 2000 80 17 19 138 Trans49 2 192 2920 96 184 187 
9 Tr m9 1 168 1400 56 18 85 139 TransSO 2 96 1960 48 184 193 

10 Tr m10 1 144 1200 48 19 85 140 Trans51 2 120 2200 60 185 200 
11 Tr ml 1 1 96 800 32 21 30 141 Trans52 2 96 1960 48 186 189 
12 Tr m12 1 264 2200 88 21 31 142 Trans53 2 48 1480 24 186 205 
13 Tr m13 1 96 800 32 22 33 143 Trans54 2 72 1720 36 186 212 
14 Tr m14 1 48 400 16 23 39 144 Trans55 2 120 2200 60 187 188 
15 Tr m15 1 48 400 16 24 26 145 Trans56 2 216 3160 108 188 204 
16 Tr m16 1 120 1000 40 25 41 146 Trans57 2 168 2680 84 189 207 
17 Tr m17 1 120 1000 40 27 28 147 Trans58 2 72 1720 36 190 197 
18 Tr m18 1 72 600 24 27 41 148 Trans59 2 186 4840 93 191 229 
19 Tr m19 1 96 800 32 28 29 149 Trans60 2 240 3400 120 191 539 
20 Tr m20 1 168 1400 56 29 44 150 Trans61 2 96 1960 48 193 204 
21 Tr m21 1 132 3600 44 29 253 151 Trans62 2 96 1960 48 195 203 
22 Tr m22 1 132 2800 44 31 88 152 Trans63 2 72 1720 36 196 205 
23 Tr m23 1 72 600 24 88 99 153 Trans64 2 72 1720 36 199 203 
24 Tr m24 1 120 1000 40 103 59 154 Trans65 2 48 1480 24 200 203 
25 Tr m25 1 168 1400 56 103 161 155 Trans66 2 327 6280 164 207 210 
26 Tr m26 1 180 3000 60 112 115 156 Trans67 2 264 3640 132 210 225 
27 Tr m27 1 144 1200 48 118 161 157 Trans68 2 186 4840 93 225 232 
28 Tr m28 1 144 1200 48 135 143 158 Trans69 2 72 1720 36 232 555 
29 Tr m29 1 96 800 32 135 374 159 Trans70 2 48 1480 24 350 455 
30 Tr m30 1 48 400 16 139 374 160 Trans71 2 120 2200 60 360 361 
31 Tr m31 1 120 1000 40 141 143 161 Trans72 2 144 2440 72 372 434 
32 Tr m32 1 180 4000 60 141 148 162 Trans73 2 72 1720 36 377 378 
33 Tr m33 1 72 600 24 141 391 163 Trans74 2 120 2200 60 384 385 
34 Tr m34 1 120 1000 40 153 154 164 Trans75 2 264 3640 132 393 402 
35 Tr m35 1 228 3400 76 154 156 165 Trans76 2 240 3400 120 395 400 
36 Tr m36 1 264 2200 88 156 159 166 Trans77 2 96 1960 48 396 426 
37 Tr m37 1 96 800 32 159 161 167 Trans78 2 144 2440 72 427 430 
38 Tr m38 1 144 1200 48 161 163 168 Trans79 2 96 1960 48 447 448 
39 Tr m39 1 96 800 32 166 167 169 TransSO 2 228 6280 114 453 454 
40 Tr m40 1 216 2600 72 166 323 170 Trans81 2 216 4120 108 459 528 
41 Tr m41 1 228 4400 76 168 175 171 Trans82 2 96 1960 48 463 481 
42 Tr m42 1 96 800 32 172 175 172 Trans83 2 192 2920 96 467 491 
43 Tr m43 1 192 1600 64 172 323 173 Trans84 2 72 1720 36 475 483 
44 Tr m44 1 72 600 24 174 175 174 Trans85 2 48 1480 24 476 491 
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45 Tr m45 1 48 400 16 177 351 
46 Tr m46 1 96 800 32 179 181 
47 Tr m47 1 96 800 32 181 351 
48 Tr m48 1 72 600 24 183 196 
49 Tr m49 1 192 1600 64 184 187 
50 Tr m 50 1 96 800 32 184 193 
51 Tr m51 1 120 1000 40 185 200 
52 Tr m 52 1 96 800 32 186 189 
53 Tr m53 1 48 400 16 186 205 
54 Tr m 54 1 72 600 24 186 212 
55 Tr m55 1 120 1000 40 187 188 
56 Tr m56 1 216 1800 72 188 204 
57 Tr m57 1 168 1400 56 189 207 
58 Tr m58 1 72 600 24 190 197 
59 Tr m 59 1 186 3200 62 191 229 
60 Tr m60 1 240 2000 80 191 539 
61 Tr m61 1 96 800 32 193 204 
62 Tr m62 1 96 800 32 195 203 
63 Tr m63 1 72 600 24 196 205 
64 Tr m 64 1 72 600 24 199 203 
65 Tr m65 1 48 400 16 200 203 
66 Tr m66 1 327 4400 109 207 210 
67 Tr m67 1 264 2200 88 210 225 
68 Tr m68 1 186 3200 62 225 232 
69 Tr m69 1 72 600 24 232 555 
70 Tr m70 1 48 400 16 350 455 
71 Tr m71 1 96 800 32 360 361 
72 Tr m72 1 48 400 16 372 434 
73 Tr m73 1 192 1600 64 377 378 
74 Tr m74 1 264 2200 48 384 385 
75 Tr m75 1 192 1600 64 393 402 
76 Tr m76 1 264 2200 88 395 400 
77 Tr m77 1 240 2000 80 396 426 
78 Tr m78 1 240 2000 80 427 430 
79 Tr m79 1 168 1400 56 447 448 
80 Tr m80 1 144 1200 48 453 454 
81 Tr m81 1 96 800 32 459 528 
82 Tr m82 1 264 2200 88 463 481 
83 Tr m83 1 96 800 32 467 491 
84 Tr m 84 1 48 400 16 475 483 
85 Tr m85 1 96 800 32 476 491 
86 Tr m86 1 120 1000 40 478 487 
87 Tr m87 1 120 1000 40 482 512 
88 Tr m88 1 72 600 24 497 515 
89 Tr m89 1 96 800 32 500 507 
90 Transi 2 120 2200 60 11 12 
91 Trans2 2 48 1480 24 11 13 
92 Trans3 2 192 2920 96 13 19 
93 Trans4 2 192 2920 96 14 16 

TransBô 2 96 1960 48 478 487 
Trans87 2 96 1960 48 482 512 
TransBB 2 72 1720 36 497 515 
Trans89 2 192 2920 96 500 507 
Xrmil 3 240 2625 120 21 71 
Xrmi2 3 240 2625 120 21 72 
Xrmi3 3 240 2100 120 73 24 
Xrmi4 3 240 2247 120 79 29 
Xrmi5 3 240 2352 120 88 94 
Xrmi6 3 240 1764 120 112 113 
Xrmi7 3 240 1764 120 119 118 
Xrmi8 3 240 1764 120 129 167 
Xrmi9 3 240 1743 120 408 136 
Xrmil 0 3 240 3150 120 138 137 
Xrmil 1 3 240 3150 120 139 140 
Xrmi12 3 240 3150 120 141 142 
Xrmil 3 3 240 2100 120 534 173 
Xrmi14 3 240 1890 120 497 207 
Xrmil 5 3 240 1890 120 211 212 
Xrmil 6 3 240 1890 120 233 232 
Xrmil 7 3 240 2625 120 232 562 
Xrmil 8 3 240 1890 120 235 234 
Xrmil 9 3 240 2650 120 323 324 
Xrmi20 3 240 2925 120 336 337 
Xrmi21 3 240 2200 120 353 352 
Xrmi22 3 240 2267 120 392 393 
Xrmi23 3 240 2372 120 422 421 
Xrmi24 3 240 1768 120 449 410 
Xrmi25 3 240 1768 120 477 523 
Xrmi26 3 240 2625 120 517 518 
Xrmjl 4 480 20000 120 21 11 
Xrmj2 4 480 20000 120 22 12 
Xrmj3 4 480 20000 120 27 14 
Xrmj4 4 480 5000 120 27 76 
Xrmj5 4 480 5000 120 79 29 
Xrmj6 4 480 12000 120 89 86 
Xrmj7 4 480 4480 120 88 94 
Xrmj8 4 480 12000 120 135 134 
Xrmj9 4 480 12000 120 135 134 
XrmjIO 4 480 3720 120 149 148 
Xrmjl 1 4 480 3320 120 155 154 
Xrmjl 2 4 480 3360 120 161 162 
Xrmjl 3 4 480 3320 120 163 164 
Xrmjl 4 4 480 3320 120 168 169 
Xrmjl 5 4 480 4000 120 179 180 
Xrmjl 6 4 480 3600 120 464 186 
Xrmjl 7 4 480 3600 120 192 190 
Xrmjl 8 4 480 3600 120 224 191 
Xrmjl 9 4 480 6000 120 203 206 

175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 



www.manaraa.com

140 

94 Trans5 2 192 2920 96 14 52 
95 Trans6 2 264 3640 132 16 17 
96 Trans7 2 240 3400 120 17 18 
97 Trans8 2 240 3400 120 17 19 
98 Trans9 2 168 2680 84 18 85 
99 Transi 0 2 144 2440 72 19 85 

100 Trans 11 2 96 1960 48 21 30 
101 Trans 12 2 264 3640 132 21 31 
102 Trans 13 2 96 1960 48 22 33 
103 Trans14 2 48 1480 24 23 39 
104 Trans 15 2 48 1480 24 24 26 
105 Trans 16 2 120 2200 60 25 41 
106 Trans 17 2 120 2200 60 27 28 
107 Trans 18 2 72 1720 36 27 41 
108 Transi 9 2 96 1960 48 28 29 
109 Trans20 2 168 2680 84 29 44 
110 Trans21 2 132 5320 66 29 253 
111 Trans22 2 132 4360 66 31 88 
112 Trans23 2 72 1720 36 88 99 
113 Trans24 2 120 2200 60 103 159 
114 Trans25 2 168 2680 84 103 161 
115 Trans26 2 180 4600 90 112 115 
116 Trans27 2 144 2440 72 118 161 
117 Trans28 2 144 2440 72 135 143 
118 Trans29 2 96 1960 48 135 374 
119 TransSO 2 48 1480 24 139 374 
120 Trans31 2 120 2200 60 141 143 
121 Trans32 2 180 5800 90 141 148 
122 Trans33 2 72 1720 36 141 391 
123 Trans34 2 120 2200 60 153 154 
124 Trans35 2 228 5080 114 154 156 
125 Trans36 2 264 3640 132 156 159 
126 Trans37 2 96 1960 48 159 161 
127 Trans38 2 144 2440 72 161 163 
128 Trans39 2 96 1960 48 166 167 
129 Trans40 2 216 4120 108 166 323 
130 Trans41 2 228 6280 114 168 175 

Xrmj20 4 480 6000 120 203 206 
CB1 5 300 3100 80 8 273 
CB2 5 300 3500 80 19 85 
CB3 5 300 2958 80 122 297 
CB4 5 300 4056 80 122 447 
CB5 5 300 3800 80 188 517 
CB6 5 300 5200 80 199 212 
CB7 5 300 2958 80 224 191 
CB8 5 300 3986 80 497 207 
CB9 5 300 3500 80 211 212 
CB10 5 300 3678 80 211 212 
CB11 5 300 3678 80 228 229 
CB12 5 300 3200 80 230 231 
CB13 5 300 2758 80 232 231 
CB14 5 300 3052 80 235 234 
CB15 5 300 3654 80 353 352 
CB16 5 300 4200 80 191 539 
CB17 5 300 2968 80 192 488 
CB18 5 300 2688 80 192 509 
CB19 5 300 2688 80 193 218 
CB20 5 300 2678 80 207 210 
OB21 5 300 3100 80 209 462 
CB22 5 300 3500 80 210 225 
CB23 5 300 1958 80 211 213 
CB24 5 300 2056 80 211 487 
CB25 5 300 3660 80 213 469 
CB26 5 300 3200 80 220 221 
CB27 5 300 2958 80 225 232 
CB28 5 300 3986 80 226 278 
CB29 5 300 3500 80 228 554 
CB30 5 300 3678 80 232 539 
CB31 5 300 3100 80 232 555 
CB32 5 300 3500 80 233 235 
CB33 5 300 2958 80 233 558 
CB34 5 300 3688 80 234 555 
CB35 5 300 4800 80 235 540 

224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
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